{"title":"Nonlocal and micropolar effects in a transversely isotropic functionally graded thermoelastic solid under an inclined load","authors":"Priti Dhankhar, M. S. Barak, Ravinder Poonia","doi":"10.1007/s11043-024-09687-3","DOIUrl":null,"url":null,"abstract":"<div><p>The objective of this study is to analyze the thermo-mechanical interactions occurring in a nonlocal transversely isotropic functionally graded (nonhomogeneous) micropolar thermoelastic half-space when subjected to an inclined load, based on the Lord and Shulman (LS) theory. The material properties are assumed to be graded exponentially along the <span>\\(z\\)</span>-direction. Utilizing the normal mode technique, the exact expressions for physical fields such as normal displacement, normal stress, shear stress, temperature field, and couple stress are derived. Numerical computation of the derived results is performed for a material resembling a magnesium crystal, and graphical representations are presented to illustrate the impacts of nonhomogeneity parameter, material’s anisotropy, time, nonlocal parameter, microinertia, and the inclination angle of the applied load on the variations of different physical fields. Some specific cases of interest have been deduced from the present investigation.</p></div>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"28 3","pages":"1349 - 1373"},"PeriodicalIF":2.1000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Time-Dependent Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11043-024-09687-3","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
The objective of this study is to analyze the thermo-mechanical interactions occurring in a nonlocal transversely isotropic functionally graded (nonhomogeneous) micropolar thermoelastic half-space when subjected to an inclined load, based on the Lord and Shulman (LS) theory. The material properties are assumed to be graded exponentially along the \(z\)-direction. Utilizing the normal mode technique, the exact expressions for physical fields such as normal displacement, normal stress, shear stress, temperature field, and couple stress are derived. Numerical computation of the derived results is performed for a material resembling a magnesium crystal, and graphical representations are presented to illustrate the impacts of nonhomogeneity parameter, material’s anisotropy, time, nonlocal parameter, microinertia, and the inclination angle of the applied load on the variations of different physical fields. Some specific cases of interest have been deduced from the present investigation.
本研究的目的是根据 Lord and Shulman(LS)理论,分析非局部横向各向同性功能分级(非均质)微极热弹性半空间在承受倾斜载荷时发生的热机械相互作用。假定材料特性沿(z)方向呈指数分级。利用法向模态技术,推导出了法向位移、法向应力、剪切应力、温度场和耦合应力等物理场的精确表达式。对于类似镁晶体的材料,对推导结果进行了数值计算,并用图解说明了非均质性参数、材料的各向异性、时间、非局部参数、微惯性和施加载荷的倾斜角度对不同物理场变化的影响。本研究还推导出了一些值得关注的具体案例。
期刊介绍:
Mechanics of Time-Dependent Materials accepts contributions dealing with the time-dependent mechanical properties of solid polymers, metals, ceramics, concrete, wood, or their composites. It is recognized that certain materials can be in the melt state as function of temperature and/or pressure. Contributions concerned with fundamental issues relating to processing and melt-to-solid transition behaviour are welcome, as are contributions addressing time-dependent failure and fracture phenomena. Manuscripts addressing environmental issues will be considered if they relate to time-dependent mechanical properties.
The journal promotes the transfer of knowledge between various disciplines that deal with the properties of time-dependent solid materials but approach these from different angles. Among these disciplines are: Mechanical Engineering, Aerospace Engineering, Chemical Engineering, Rheology, Materials Science, Polymer Physics, Design, and others.