Semicontinuous Blending of Pharmaceutical Ingredients and the Impact of Process Parameters on the Blending Performance of an Integrated Feeder Blender Operating Semicontinuously
Sumit Kumar, Yan-Shu Huang, Zoltan Nagy, Gintaras V. Reklaitis, Marcial Gonzalez, Paul Mort
{"title":"Semicontinuous Blending of Pharmaceutical Ingredients and the Impact of Process Parameters on the Blending Performance of an Integrated Feeder Blender Operating Semicontinuously","authors":"Sumit Kumar, Yan-Shu Huang, Zoltan Nagy, Gintaras V. Reklaitis, Marcial Gonzalez, Paul Mort","doi":"10.1155/2024/8816672","DOIUrl":null,"url":null,"abstract":"The pharmaceutical industry is looking for new and innovative ways of manufacturing to improve product quality and reduce process complexity. In manufacturing oral solid dosage products, blending is a crucial step in ensuring the homogeneity of active pharmaceutical ingredients (APIs) in the final product. Currently, batch and continuous blending are the two commonly used modes for blending in the industry. However, these methods have limitations in terms of blending time, manual intervention, and flexibility in handling multiple ingredients. To address these limitations, this study aims to explore the feasibility and benefits of using a semicontinuous blending mode in the pharmaceutical industry. A case study is conducted using a binary blend of microcrystalline cellulose and acetaminophen to compare the performance of the semicontinuous mode of blending with the batch and continuous blending modes. The results show that the semicontinuous blending setup can produce blends with good blend uniformity and homogeneity and that the output can be used for both batch and continuous downstream operations. The effect of variation in the three most important process parameters, impeller rotation per minute, blending time, and fill level on the blend uniformity, is also investigated. The semicontinuous blending mode had a higher line rate of 12.5 kg/hour than a similarly sized batch blender at 3.6 kg/hour and less than that of a continuous blender. The benefits of the new blending mode include reduced blending time, minimal manual intervention, flexibility in blending multiple ingredients, easier scale-up, and a smaller footprint. Overall, this study highlights the relative advantages of using this new semicontinuous blending mode in pharmaceutical manufacturing and its potential as a good alternative to the existing blending modes. The semicontinuous mode is well placed between the batch blending and continuous blending mode, with many benefits over the former mode and performance comparable to the latter continuous mode.","PeriodicalId":7345,"journal":{"name":"Advances in Materials Science and Engineering","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Materials Science and Engineering","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1155/2024/8816672","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
The pharmaceutical industry is looking for new and innovative ways of manufacturing to improve product quality and reduce process complexity. In manufacturing oral solid dosage products, blending is a crucial step in ensuring the homogeneity of active pharmaceutical ingredients (APIs) in the final product. Currently, batch and continuous blending are the two commonly used modes for blending in the industry. However, these methods have limitations in terms of blending time, manual intervention, and flexibility in handling multiple ingredients. To address these limitations, this study aims to explore the feasibility and benefits of using a semicontinuous blending mode in the pharmaceutical industry. A case study is conducted using a binary blend of microcrystalline cellulose and acetaminophen to compare the performance of the semicontinuous mode of blending with the batch and continuous blending modes. The results show that the semicontinuous blending setup can produce blends with good blend uniformity and homogeneity and that the output can be used for both batch and continuous downstream operations. The effect of variation in the three most important process parameters, impeller rotation per minute, blending time, and fill level on the blend uniformity, is also investigated. The semicontinuous blending mode had a higher line rate of 12.5 kg/hour than a similarly sized batch blender at 3.6 kg/hour and less than that of a continuous blender. The benefits of the new blending mode include reduced blending time, minimal manual intervention, flexibility in blending multiple ingredients, easier scale-up, and a smaller footprint. Overall, this study highlights the relative advantages of using this new semicontinuous blending mode in pharmaceutical manufacturing and its potential as a good alternative to the existing blending modes. The semicontinuous mode is well placed between the batch blending and continuous blending mode, with many benefits over the former mode and performance comparable to the latter continuous mode.
期刊介绍:
Advances in Materials Science and Engineering is a broad scope journal that publishes articles in all areas of materials science and engineering including, but not limited to:
-Chemistry and fundamental properties of matter
-Material synthesis, fabrication, manufacture, and processing
-Magnetic, electrical, thermal, and optical properties of materials
-Strength, durability, and mechanical behaviour of materials
-Consideration of materials in structural design, modelling, and engineering
-Green and renewable materials, and consideration of materials’ life cycles
-Materials in specialist applications (such as medicine, energy, aerospace, and nanotechnology)