Edge-minimum saturated k -planar drawings

IF 0.9 3区 数学 Q2 MATHEMATICS
Steven Chaplick, Fabian Klute, Irene Parada, Jonathan Rollin, Torsten Ueckerdt
{"title":"Edge-minimum saturated \n \n k\n -planar drawings","authors":"Steven Chaplick,&nbsp;Fabian Klute,&nbsp;Irene Parada,&nbsp;Jonathan Rollin,&nbsp;Torsten Ueckerdt","doi":"10.1002/jgt.23097","DOIUrl":null,"url":null,"abstract":"<p>For a class <span></span><math>\n \n <mrow>\n <mi>D</mi>\n </mrow></math> of drawings of loopless (multi-)graphs in the plane, a drawing <span></span><math>\n \n <mrow>\n <mi>D</mi>\n \n <mo>∈</mo>\n \n <mi>D</mi>\n </mrow></math> is <i>saturated</i> when the addition of any edge to <span></span><math>\n \n <mrow>\n <mi>D</mi>\n </mrow></math> results in <span></span><math>\n \n <mrow>\n <msup>\n <mi>D</mi>\n \n <mo>′</mo>\n </msup>\n \n <mo>∉</mo>\n \n <mi>D</mi>\n </mrow></math>—this is analogous to saturated graphs in a graph class as introduced by Turán and Erdős, Hajnal, and Moon. We focus on <span></span><math>\n \n <mrow>\n <mi>k</mi>\n </mrow></math>-planar drawings, that is, graphs drawn in the plane where each edge is crossed at most <span></span><math>\n \n <mrow>\n <mi>k</mi>\n </mrow></math> times, and the classes <span></span><math>\n \n <mrow>\n <mi>D</mi>\n </mrow></math> of all <span></span><math>\n \n <mrow>\n <mi>k</mi>\n </mrow></math>-planar drawings obeying a number of restrictions, such as having no crossing incident edges, no pair of edges crossing more than once, or no edge crossing itself. While saturated <span></span><math>\n \n <mrow>\n <mi>k</mi>\n </mrow></math>-planar drawings are the focus of several prior works, tight bounds on how sparse these can be are not well understood. We establish a generic framework to determine the minimum number of edges among all <span></span><math>\n \n <mrow>\n <mi>n</mi>\n </mrow></math>-vertex saturated <span></span><math>\n \n <mrow>\n <mi>k</mi>\n </mrow></math>-planar drawings in many natural classes. For example, when incident crossings, multicrossings and selfcrossings are all allowed, the sparsest <span></span><math>\n \n <mrow>\n <mi>n</mi>\n </mrow></math>-vertex saturated <span></span><math>\n \n <mrow>\n <mi>k</mi>\n </mrow></math>-planar drawings have <span></span><math>\n \n <mrow>\n <mfrac>\n <mn>2</mn>\n \n <mrow>\n <mi>k</mi>\n \n <mo>−</mo>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>k</mi>\n <mspace></mspace>\n \n <mi>mod</mi>\n <mspace></mspace>\n \n <mn>2</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mfrac>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow></math> edges for any <span></span><math>\n \n <mrow>\n <mi>k</mi>\n \n <mo>≥</mo>\n \n <mn>4</mn>\n </mrow></math>, while if all that is forbidden, the sparsest such drawings have <span></span><math>\n \n <mrow>\n <mfrac>\n <mrow>\n <mn>2</mn>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>k</mi>\n \n <mo>+</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n \n <mrow>\n <mi>k</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>k</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mfrac>\n \n <mrow>\n <mo>(</mo>\n \n <mrow>\n <mi>n</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow></math> edges for any <span></span><math>\n \n <mrow>\n <mi>k</mi>\n \n <mo>≥</mo>\n \n <mn>6</mn>\n </mrow></math>.</p>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"106 4","pages":"741-762"},"PeriodicalIF":0.9000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jgt.23097","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23097","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For a class D of drawings of loopless (multi-)graphs in the plane, a drawing D D is saturated when the addition of any edge to D results in D D —this is analogous to saturated graphs in a graph class as introduced by Turán and Erdős, Hajnal, and Moon. We focus on k -planar drawings, that is, graphs drawn in the plane where each edge is crossed at most k times, and the classes D of all k -planar drawings obeying a number of restrictions, such as having no crossing incident edges, no pair of edges crossing more than once, or no edge crossing itself. While saturated k -planar drawings are the focus of several prior works, tight bounds on how sparse these can be are not well understood. We establish a generic framework to determine the minimum number of edges among all n -vertex saturated k -planar drawings in many natural classes. For example, when incident crossings, multicrossings and selfcrossings are all allowed, the sparsest n -vertex saturated k -planar drawings have 2 k ( k mod 2 ) ( n 1 ) edges for any k 4 , while if all that is forbidden, the sparsest such drawings have 2 ( k + 1 ) k ( k 1 ) ( n 1 ) edges for any k 6 .

Abstract Image

边缘最小饱和 k 平面绘图
对于平面中无循环(多)图的一类 D${mathscr{D}}$ 图、当在 D$D$ 中添加任何边都会导致 D′∉D${D}^{^{prime} }not\in {\mathscr{D}}$ 时,图 D∈D$D\in {\mathscr{D}}$ 就是饱和图--这类似于图兰和厄多斯、哈伊纳尔和穆恩提出的图类中的饱和图。我们关注的是 k$k$-planar 绘图,即在平面上绘制的、每条边最多交叉 k$k$ 次的图形,以及所有 k$k$-planar 绘图的类 D${mathscr{D}}$,这些类遵守一系列限制条件,例如没有交叉的附带边、没有交叉超过一次的边对或没有交叉本身的边。虽然饱和 k$k$-planar 绘图是之前几项研究的重点,但对这些绘图的稀疏程度的严格限制却不甚了解。我们建立了一个通用框架,以确定许多自然类中所有 n$n$ 顶点饱和 k$k$ 平面图形的最小边数。例如,当入射交叉、多交叉和自交叉都被允许时,最稀疏的 n$n$-顶点饱和 k$k$-平面图有 2k-(kmod2)(n-1)$\frac{2}{k-(k\、\对于任意 k≥4$k\ge 4$,最稀疏的平面图有 2(k+1)k(k-1)(n-1)$frac{2(k+1)}{k(k-1)}(n-1)$边。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信