Soheila Taebi, Charitha Pattiaratchi, Ivan Haigh, Gary Kendrick
{"title":"Circulation and Stratification Changes in a Hypersaline Estuary Due to Mean Sea Level Rise","authors":"Soheila Taebi, Charitha Pattiaratchi, Ivan Haigh, Gary Kendrick","doi":"10.3390/jmse12040579","DOIUrl":null,"url":null,"abstract":"Hypersaline Hamelin Pool, with mean salinity >65, is located in Shark Bay, Western Australia. The high salinity has reduced its biodiversity, but it is home to a diverse assemblage of modern marine stromatolites. The limited exchange of water between Hamelin Pool and the rest of Shark Bay, due to the presence of the shallow Faure Sill together with high evaporation and low rainfall-runoff have resulted in a hypersaline environment. With climate-change-induced mean sea level rise (MSLR), hydrodynamic processes that maintain the hypersaline environment may be affected and are the focus of this paper. Oceanographic observations, together with hydrodynamic model results, were used to examine the hydrodynamic processes under present and future MSLR scenarios. A large attenuation in the tidal range, changes in the tidal characteristics, and current speeds together with a strong salinity gradient were observed across the Faure Sill under present-day conditions. Under an MSLR scenario of 1 m, the tidal amplitude decreased by up to 10% to the north, whilst to the south, the tidal range increased by up to 15%. Regions of strong vertical stratification were present on both sides of the Faure Sill. The simulations indicated that, under MSLR scenarios, these regions expanded in area and exhibited higher levels of vertical stratification. The salt flux across the Faure Sill was maintained as a diffusive process under MSLR scenarios.","PeriodicalId":16168,"journal":{"name":"Journal of Marine Science and Engineering","volume":"74 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Marine Science and Engineering","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3390/jmse12040579","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0
Abstract
Hypersaline Hamelin Pool, with mean salinity >65, is located in Shark Bay, Western Australia. The high salinity has reduced its biodiversity, but it is home to a diverse assemblage of modern marine stromatolites. The limited exchange of water between Hamelin Pool and the rest of Shark Bay, due to the presence of the shallow Faure Sill together with high evaporation and low rainfall-runoff have resulted in a hypersaline environment. With climate-change-induced mean sea level rise (MSLR), hydrodynamic processes that maintain the hypersaline environment may be affected and are the focus of this paper. Oceanographic observations, together with hydrodynamic model results, were used to examine the hydrodynamic processes under present and future MSLR scenarios. A large attenuation in the tidal range, changes in the tidal characteristics, and current speeds together with a strong salinity gradient were observed across the Faure Sill under present-day conditions. Under an MSLR scenario of 1 m, the tidal amplitude decreased by up to 10% to the north, whilst to the south, the tidal range increased by up to 15%. Regions of strong vertical stratification were present on both sides of the Faure Sill. The simulations indicated that, under MSLR scenarios, these regions expanded in area and exhibited higher levels of vertical stratification. The salt flux across the Faure Sill was maintained as a diffusive process under MSLR scenarios.
期刊介绍:
Journal of Marine Science and Engineering (JMSE; ISSN 2077-1312) is an international, peer-reviewed open access journal which provides an advanced forum for studies related to marine science and engineering. It publishes reviews, research papers and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.