{"title":"Magnetochromic Elastomer With Instant Color Changes: A Study of the Influence of Material Composition","authors":"Chonghui Li, Frederikke Bahrt Madsen, Lifei Liu, Liyun Yu, Weizhen Zhao, Anne Ladegaard Skov","doi":"10.1002/mame.202400034","DOIUrl":null,"url":null,"abstract":"<p>Magnetochromic materials change color upon variation in an external magnetic field. A magnetochromic elastomer resulting from the dispersion of magnetic nanoparticles (MNPs) in a liquid and subsequent emulsification in a crosslinkable polydimethylsiloxane (PDMS) is presented. The MNPs form rod-like structures under an external magnetic field, aligning with the field and allowing light to pass through the elastomer. The elastomer thus changes from dark grey to transparent/light grey. Polyethylene glycol 200 (PEG200) is selected as carrier liquid due to the faster movement of MNPs herein than in glycerol, leading to more rapid color changes in the films. The influence of magnetic particle types (commercial, superparamagnetic, and surfactant-coated) on the magnetochromic effects is investigated. All films exhibit optical density changes upon exposure to a magnetic field. Moreover, the films retain their color-changing ability after cycles of 40 times exposure to a magnetic field. Compared to the synthesized superparamagnetic particles, the films with commercial particles display superior optical density change abilities, suggesting commercial MNPs are more suitable for magnetochromic films. The obtained films have promising applications as magnetical field sensors due to their simple storage requirements, rapid response, and excellent repeatability.</p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"309 9","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400034","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Materials and Engineering","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mame.202400034","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Magnetochromic materials change color upon variation in an external magnetic field. A magnetochromic elastomer resulting from the dispersion of magnetic nanoparticles (MNPs) in a liquid and subsequent emulsification in a crosslinkable polydimethylsiloxane (PDMS) is presented. The MNPs form rod-like structures under an external magnetic field, aligning with the field and allowing light to pass through the elastomer. The elastomer thus changes from dark grey to transparent/light grey. Polyethylene glycol 200 (PEG200) is selected as carrier liquid due to the faster movement of MNPs herein than in glycerol, leading to more rapid color changes in the films. The influence of magnetic particle types (commercial, superparamagnetic, and surfactant-coated) on the magnetochromic effects is investigated. All films exhibit optical density changes upon exposure to a magnetic field. Moreover, the films retain their color-changing ability after cycles of 40 times exposure to a magnetic field. Compared to the synthesized superparamagnetic particles, the films with commercial particles display superior optical density change abilities, suggesting commercial MNPs are more suitable for magnetochromic films. The obtained films have promising applications as magnetical field sensors due to their simple storage requirements, rapid response, and excellent repeatability.
期刊介绍:
Macromolecular Materials and Engineering is the high-quality polymer science journal dedicated to the design, modification, characterization, processing and application of advanced polymeric materials, including membranes, sensors, sustainability, composites, fibers, foams, 3D printing, actuators as well as energy and electronic applications.
Macromolecular Materials and Engineering is among the top journals publishing original research in polymer science.
The journal presents strictly peer-reviewed Research Articles, Reviews, Perspectives and Comments.
ISSN: 1438-7492 (print). 1439-2054 (online).
Readership:Polymer scientists, chemists, physicists, materials scientists, engineers
Abstracting and Indexing Information:
CAS: Chemical Abstracts Service (ACS)
CCR Database (Clarivate Analytics)
Chemical Abstracts Service/SciFinder (ACS)
Chemistry Server Reaction Center (Clarivate Analytics)
ChemWeb (ChemIndustry.com)
Chimica Database (Elsevier)
COMPENDEX (Elsevier)
Current Contents: Physical, Chemical & Earth Sciences (Clarivate Analytics)
Directory of Open Access Journals (DOAJ)
INSPEC (IET)
Journal Citation Reports/Science Edition (Clarivate Analytics)
Materials Science & Engineering Database (ProQuest)
PASCAL Database (INIST/CNRS)
Polymer Library (iSmithers RAPRA)
Reaction Citation Index (Clarivate Analytics)
Science Citation Index (Clarivate Analytics)
Science Citation Index Expanded (Clarivate Analytics)
SciTech Premium Collection (ProQuest)
SCOPUS (Elsevier)
Technology Collection (ProQuest)
Web of Science (Clarivate Analytics)