Suppression of phase segregation in wide-bandgap perovskites with thiocyanate ions for perovskite/organic tandems with 25.06% efficiency

IF 49.7 1区 材料科学 Q1 ENERGY & FUELS
Zhichao Zhang, Weijie Chen, Xingxing Jiang, Jianlei Cao, Haidi Yang, Haiyang Chen, Fu Yang, Yunxiu Shen, Heyi Yang, Qinrong Cheng, Xining Chen, Xiaohua Tang, Shuaiqing Kang, Xue-mei Ou, Christoph J. Brabec, Yaowen Li, Yongfang Li
{"title":"Suppression of phase segregation in wide-bandgap perovskites with thiocyanate ions for perovskite/organic tandems with 25.06% efficiency","authors":"Zhichao Zhang, Weijie Chen, Xingxing Jiang, Jianlei Cao, Haidi Yang, Haiyang Chen, Fu Yang, Yunxiu Shen, Heyi Yang, Qinrong Cheng, Xining Chen, Xiaohua Tang, Shuaiqing Kang, Xue-mei Ou, Christoph J. Brabec, Yaowen Li, Yongfang Li","doi":"10.1038/s41560-024-01491-0","DOIUrl":null,"url":null,"abstract":"Mixed halide wide-bandgap perovskites are suitable for integration in tandem photovoltaics such as perovskite/organic tandem solar cells. However, halide phase segregation originating from halogen vacancy-assisted ion migration in wide-bandgap perovskites limits the device efficiency and lifetime. Here we incorporate pseudo-halogen thiocyanate (SCN) ions in iodide/bromide mixed halide perovskites and show that they enhance crystallization and reduce grain boundaries. Trace amount of SCN ions in the bulk enter the perovskite lattice, forming an I/Br/SCN alloy, and occupy iodine vacancies, blocking halide ion migration via steric hindrance. Taken together, these effects retard halide phase segregation under operation and reduce energy loss in the wide-bandgap perovskite cells. The resulting perovskite/organic tandem solar cell achieves a power conversion efficiency of 25.82% (certified 25.06%) and an operational stability of 1,000 h. Wide-bandgap perovskite solar cells suffer from phase segregation. Zhang et al. show that thiocyanate ions overcome the issue by occupying iodide vacancies while regulating crystallization, enabling perovskite/organic tandem cells with 25.06% efficiency.","PeriodicalId":19073,"journal":{"name":"Nature Energy","volume":"9 5","pages":"592-601"},"PeriodicalIF":49.7000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Energy","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41560-024-01491-0","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Mixed halide wide-bandgap perovskites are suitable for integration in tandem photovoltaics such as perovskite/organic tandem solar cells. However, halide phase segregation originating from halogen vacancy-assisted ion migration in wide-bandgap perovskites limits the device efficiency and lifetime. Here we incorporate pseudo-halogen thiocyanate (SCN) ions in iodide/bromide mixed halide perovskites and show that they enhance crystallization and reduce grain boundaries. Trace amount of SCN ions in the bulk enter the perovskite lattice, forming an I/Br/SCN alloy, and occupy iodine vacancies, blocking halide ion migration via steric hindrance. Taken together, these effects retard halide phase segregation under operation and reduce energy loss in the wide-bandgap perovskite cells. The resulting perovskite/organic tandem solar cell achieves a power conversion efficiency of 25.82% (certified 25.06%) and an operational stability of 1,000 h. Wide-bandgap perovskite solar cells suffer from phase segregation. Zhang et al. show that thiocyanate ions overcome the issue by occupying iodide vacancies while regulating crystallization, enabling perovskite/organic tandem cells with 25.06% efficiency.

Abstract Image

Abstract Image

用硫氰酸根离子抑制宽带隙过氧化物中的相分离,实现 25.06% 的过氧化物/有机串联效率
混合卤化物宽带隙过氧化物晶石适合集成到串联光伏技术中,如过氧化物晶石/有机串联太阳能电池。然而,宽带隙过氧化物中卤素空位辅助离子迁移引起的卤化物相分离限制了器件的效率和寿命。在这里,我们在碘/溴混合卤化物包晶石中加入了假卤素硫氰酸根(SCN)离子,并证明它们能增强结晶并减少晶界。块体中的微量 SCN 离子进入包晶晶格,形成 I/Br/SCN 合金,并占据碘空位,通过立体阻碍阻止卤离子迁移。总之,这些效应可延缓运行过程中的卤化物相分离,并减少宽带隙包晶电池的能量损失。由此产生的包晶石/有机串联太阳能电池的功率转换效率达到 25.82%(认证值为 25.06%),工作稳定性达到 1,000 小时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Energy
Nature Energy Energy-Energy Engineering and Power Technology
CiteScore
75.10
自引率
1.10%
发文量
193
期刊介绍: Nature Energy is a monthly, online-only journal committed to showcasing the most impactful research on energy, covering everything from its generation and distribution to the societal implications of energy technologies and policies. With a focus on exploring all facets of the ongoing energy discourse, Nature Energy delves into topics such as energy generation, storage, distribution, management, and the societal impacts of energy technologies and policies. Emphasizing studies that push the boundaries of knowledge and contribute to the development of next-generation solutions, the journal serves as a platform for the exchange of ideas among stakeholders at the forefront of the energy sector. Maintaining the hallmark standards of the Nature brand, Nature Energy boasts a dedicated team of professional editors, a rigorous peer-review process, meticulous copy-editing and production, rapid publication times, and editorial independence. In addition to original research articles, Nature Energy also publishes a range of content types, including Comments, Perspectives, Reviews, News & Views, Features, and Correspondence, covering a diverse array of disciplines relevant to the field of energy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信