Commuting tuple of multiplication operators homogeneous under the unitary group

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Soumitra Ghara, Surjit Kumar, Gadadhar Misra, Paramita Pramanick
{"title":"Commuting tuple of multiplication operators homogeneous under the unitary group","authors":"Soumitra Ghara,&nbsp;Surjit Kumar,&nbsp;Gadadhar Misra,&nbsp;Paramita Pramanick","doi":"10.1112/jlms.12890","DOIUrl":null,"url":null,"abstract":"<p>Let <span></span><math>\n <semantics>\n <mrow>\n <mi>U</mi>\n <mo>(</mo>\n <mi>d</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathcal {U}(d)$</annotation>\n </semantics></math> be the group of <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>×</mo>\n <mi>d</mi>\n </mrow>\n <annotation>$d\\times d$</annotation>\n </semantics></math> unitary matrices. We find conditions to ensure that a <span></span><math>\n <semantics>\n <mrow>\n <mi>U</mi>\n <mo>(</mo>\n <mi>d</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathcal {U}(d)$</annotation>\n </semantics></math>-homogeneous <span></span><math>\n <semantics>\n <mi>d</mi>\n <annotation>$d$</annotation>\n </semantics></math>-tuple <span></span><math>\n <semantics>\n <mi>T</mi>\n <annotation>$\\bm{T}$</annotation>\n </semantics></math> is unitarily equivalent to multiplication by the coordinate functions on some reproducing kernel Hilbert space <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>H</mi>\n <mi>K</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>B</mi>\n <mi>d</mi>\n </msub>\n <mo>,</mo>\n <msup>\n <mi>C</mi>\n <mi>n</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n <mo>⊆</mo>\n <mtext>Hol</mtext>\n <mrow>\n <mo>(</mo>\n <msub>\n <mi>B</mi>\n <mi>d</mi>\n </msub>\n <mo>,</mo>\n <msup>\n <mi>C</mi>\n <mi>n</mi>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\mathcal {H}_K(\\mathbb {B}_d, \\mathbb {C}^n) \\subseteq \\mbox{\\rm Hol}(\\mathbb {B}_d, \\mathbb {C}^n)$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>=</mo>\n <mo>dim</mo>\n <msubsup>\n <mo>∩</mo>\n <mrow>\n <mi>j</mi>\n <mo>=</mo>\n <mn>1</mn>\n </mrow>\n <mi>d</mi>\n </msubsup>\n <mo>ker</mo>\n <msubsup>\n <mi>T</mi>\n <mi>j</mi>\n <mo>∗</mo>\n </msubsup>\n </mrow>\n <annotation>$n= \\dim \\cap _{j=1}^d \\ker T^*_{j}$</annotation>\n </semantics></math>. We describe this class of <span></span><math>\n <semantics>\n <mrow>\n <mi>U</mi>\n <mo>(</mo>\n <mi>d</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathcal {U}(d)$</annotation>\n </semantics></math>-homogeneous operators, equivalently, nonnegative kernels <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math> quasi-invariant under the action of <span></span><math>\n <semantics>\n <mrow>\n <mi>U</mi>\n <mo>(</mo>\n <mi>d</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathcal {U}(d)$</annotation>\n </semantics></math>. We classify quasi-invariant kernels <span></span><math>\n <semantics>\n <mi>K</mi>\n <annotation>$K$</annotation>\n </semantics></math> transforming under <span></span><math>\n <semantics>\n <mrow>\n <mi>U</mi>\n <mo>(</mo>\n <mi>d</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$\\mathcal {U}(d)$</annotation>\n </semantics></math> with two specific choice of multipliers. A crucial ingredient of the proof is that the group <span></span><math>\n <semantics>\n <mrow>\n <mi>S</mi>\n <mi>U</mi>\n <mo>(</mo>\n <mi>d</mi>\n <mo>)</mo>\n </mrow>\n <annotation>$SU(d)$</annotation>\n </semantics></math> has exactly two inequivalent irreducible unitary representations of dimension <span></span><math>\n <semantics>\n <mi>d</mi>\n <annotation>$d$</annotation>\n </semantics></math> and none in dimensions <span></span><math>\n <semantics>\n <mrow>\n <mn>2</mn>\n <mo>,</mo>\n <mtext>…</mtext>\n <mo>,</mo>\n <mi>d</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$2, \\ldots , d-1$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <mi>d</mi>\n <mo>⩾</mo>\n <mn>3</mn>\n </mrow>\n <annotation>$d\\geqslant 3$</annotation>\n </semantics></math>. We obtain explicit criterion for boundedness, reducibility, and mutual unitary equivalence among these operators.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1112/jlms.12890","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Let U ( d ) $\mathcal {U}(d)$ be the group of d × d $d\times d$ unitary matrices. We find conditions to ensure that a U ( d ) $\mathcal {U}(d)$ -homogeneous d $d$ -tuple T $\bm{T}$ is unitarily equivalent to multiplication by the coordinate functions on some reproducing kernel Hilbert space H K ( B d , C n ) Hol ( B d , C n ) $\mathcal {H}_K(\mathbb {B}_d, \mathbb {C}^n) \subseteq \mbox{\rm Hol}(\mathbb {B}_d, \mathbb {C}^n)$ , n = dim j = 1 d ker T j $n= \dim \cap _{j=1}^d \ker T^*_{j}$ . We describe this class of U ( d ) $\mathcal {U}(d)$ -homogeneous operators, equivalently, nonnegative kernels K $K$ quasi-invariant under the action of U ( d ) $\mathcal {U}(d)$ . We classify quasi-invariant kernels K $K$ transforming under U ( d ) $\mathcal {U}(d)$ with two specific choice of multipliers. A crucial ingredient of the proof is that the group S U ( d ) $SU(d)$ has exactly two inequivalent irreducible unitary representations of dimension d $d$ and none in dimensions 2 , , d 1 $2, \ldots , d-1$ , d 3 $d\geqslant 3$ . We obtain explicit criterion for boundedness, reducibility, and mutual unitary equivalence among these operators.

单元群下同质乘法算子的换元组
让 U ( d ) $\mathcal {U}(d)$ 是 d × d $d\times d$ 单元矩阵群。我们要找到一些条件,以确保 U ( d ) $mathcal {U}(d)$ -homogeneous d $d$ -tuple T $\bm{T}$ 与某个重现核 Hilbert 空间 H K ( B d , C n ) 上的坐标函数相乘是单位等价的。 ⊆ Hol ( B d , C n ) $\mathcal {H}_K(\mathbb {B}_d, \mathbb {C}^n) \subseteq \mbox\rm Hol}(\mathbb {B}_d, \mathbb {C}^n)$ 、 n = dim ∩ j = 1 d ker T j∗ $n= \dim \cap _{j=1}^d \ker T^*_{j}$ 。我们描述这一类 U ( d ) $\mathcal {U}(d)$ -同调算子,等价地,非负核 K $K$ 在 U ( d ) $\mathcal {U}(d)$ 作用下准不变。我们将在 U ( d ) $mathcal {U}(d)$ 作用下变换的准不变核 K $K$ 用两种特定的乘数选择进行分类。证明的一个关键要素是群 S U ( d ) $SU(d)$ 在维数为 d $d$ 的情况下有两个不等价的不可还原单元表示,而在维数为 2 , ... , d - 1 $2, \ldots , d-1$ , d ⩾ 3 $d\geqslant 3$ 的情况下没有。我们得到了这些算子的有界性、可还原性和相互单元等价性的明确标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信