{"title":"Covalent organic polymers based on special dithioureas for efficient removal of Hg2+ from aqueous solutions","authors":"Haishan Zhu, Ye Tao, Cailing Ni, Yanqing Chen, Hualin Jiang, Yuancheng Qin","doi":"10.1016/j.hazadv.2024.100422","DOIUrl":null,"url":null,"abstract":"<div><p>The damage caused by mercury ions (Hg<sup>2+</sup>) to human beings motivates the development of highly efficient technologies for the removal of Hg<sup>2+</sup> from water. Here, based on the coordination theory between functional groups and Hg<sup>2+</sup>, two covalent organic polymers (COPs) materials were successfully prepared by a more environmentally friendly Michael addition elimination reaction, and the thiourea structure, which has a particularly strong affinity for Hg<sup>2+</sup>, was successfully introduced into the material framework. The introduction of the special dithiourea structure created a rich environment of S and N atoms within the COPs structure, which exhibited high adsorption performance for Hg<sup>2+</sup>. Adsorption experiments showed that the dithiourea-functionalized COPs exhibited high adsorption capacities for Hg<sup>2+</sup>, with the maximum adsorption capacities of 840.9 and 880 mg <em>g</em><sup>−1</sup> for the two materials, respectively. The adsorption performance remained relatively good after four adsorption-desorption cycles, and the adsorption selectivity for Hg<sup>2+</sup> was intense. Mechanistic studies by X-ray photoelectron spectroscopy and density flooding theory calculations suggest that it is the S atoms within the structure that chelate with the Hg<sup>2+</sup> and contribute to the adsorption capacity of the Hg<sup>2+</sup>. Therefore, this study provides a new strategy for the development of COP adsorbents for efficient removal of Hg<sup>2+</sup> in aqueous solutions during remediation activities.</p></div>","PeriodicalId":73763,"journal":{"name":"Journal of hazardous materials advances","volume":"14 ","pages":"Article 100422"},"PeriodicalIF":5.4000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772416624000238/pdfft?md5=7fcf610c288aeb8077e068e93b5bd6e4&pid=1-s2.0-S2772416624000238-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of hazardous materials advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772416624000238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The damage caused by mercury ions (Hg2+) to human beings motivates the development of highly efficient technologies for the removal of Hg2+ from water. Here, based on the coordination theory between functional groups and Hg2+, two covalent organic polymers (COPs) materials were successfully prepared by a more environmentally friendly Michael addition elimination reaction, and the thiourea structure, which has a particularly strong affinity for Hg2+, was successfully introduced into the material framework. The introduction of the special dithiourea structure created a rich environment of S and N atoms within the COPs structure, which exhibited high adsorption performance for Hg2+. Adsorption experiments showed that the dithiourea-functionalized COPs exhibited high adsorption capacities for Hg2+, with the maximum adsorption capacities of 840.9 and 880 mg g−1 for the two materials, respectively. The adsorption performance remained relatively good after four adsorption-desorption cycles, and the adsorption selectivity for Hg2+ was intense. Mechanistic studies by X-ray photoelectron spectroscopy and density flooding theory calculations suggest that it is the S atoms within the structure that chelate with the Hg2+ and contribute to the adsorption capacity of the Hg2+. Therefore, this study provides a new strategy for the development of COP adsorbents for efficient removal of Hg2+ in aqueous solutions during remediation activities.