On trivial cyclically covering subspaces of Fqn

IF 1.2 3区 数学 Q1 MATHEMATICS
Jing Huang
{"title":"On trivial cyclically covering subspaces of Fqn","authors":"Jing Huang","doi":"10.1016/j.ffa.2024.102423","DOIUrl":null,"url":null,"abstract":"<div><p>A subspace of <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msubsup></math></span> is called a cyclically covering subspace if for every vector of <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msubsup></math></span>, operating a certain number of cyclic shifts on it, the resulting vector lies in the subspace. In this paper, we study the problem of under what conditions <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msubsup></math></span> is itself the only covering subspace of <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msubsup></math></span>, symbolically, <span><math><msub><mrow><mi>h</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span>, which is an open problem posed in Cameron et al. (2019) <span>[3]</span> and Aaronson et al. (2021) <span>[1]</span>. We apply the primitive idempotents of the cyclic group algebra to attack this problem; when <em>q</em> is relatively prime to <em>n</em>, we obtain a necessary and sufficient condition under which <span><math><msub><mrow><mi>h</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span>, which completely answers the problem in this case. Our main result reveals that the problem can be fully reduced to that of determining the values of the trace function over finite fields. As consequences, we explicitly determine several infinitely families of <span><math><msubsup><mrow><mi>F</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>n</mi></mrow></msubsup></math></span> which satisfy <span><math><msub><mrow><mi>h</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mi>n</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span>.</p></div>","PeriodicalId":50446,"journal":{"name":"Finite Fields and Their Applications","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finite Fields and Their Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1071579724000625","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

A subspace of Fqn is called a cyclically covering subspace if for every vector of Fqn, operating a certain number of cyclic shifts on it, the resulting vector lies in the subspace. In this paper, we study the problem of under what conditions Fqn is itself the only covering subspace of Fqn, symbolically, hq(n)=0, which is an open problem posed in Cameron et al. (2019) [3] and Aaronson et al. (2021) [1]. We apply the primitive idempotents of the cyclic group algebra to attack this problem; when q is relatively prime to n, we obtain a necessary and sufficient condition under which hq(n)=0, which completely answers the problem in this case. Our main result reveals that the problem can be fully reduced to that of determining the values of the trace function over finite fields. As consequences, we explicitly determine several infinitely families of Fqn which satisfy hq(n)=0.

关于 Fqn 的琐碎循环覆盖子空间
如果对 Fqn 的每个向量进行一定次数的循环移位,得到的向量位于该子空间中,则 Fqn 的一个子空间称为循环覆盖子空间。本文研究的问题是,在什么条件下 Fqn 本身是 Fqn 的唯一覆盖子空间,符号为 hq(n)=0,这是 Cameron 等(2019)[3] 和 Aaronson 等(2021)[1] 提出的一个开放问题。我们应用循环群代数的基元幂级数来解决这个问题;当 q 相对于 n 是素数时,我们得到了 hq(n)=0 的必要条件和充分条件,在这种情况下完全解答了这个问题。我们的主要结果表明,这个问题完全可以简化为确定有限域上的迹函数值。因此,我们明确地确定了满足 hq(n)=0 的 Fqn 的几个无穷族。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.00
自引率
20.00%
发文量
133
审稿时长
6-12 weeks
期刊介绍: Finite Fields and Their Applications is a peer-reviewed technical journal publishing papers in finite field theory as well as in applications of finite fields. As a result of applications in a wide variety of areas, finite fields are increasingly important in several areas of mathematics, including linear and abstract algebra, number theory and algebraic geometry, as well as in computer science, statistics, information theory, and engineering. For cohesion, and because so many applications rely on various theoretical properties of finite fields, it is essential that there be a core of high-quality papers on theoretical aspects. In addition, since much of the vitality of the area comes from computational problems, the journal publishes papers on computational aspects of finite fields as well as on algorithms and complexity of finite field-related methods. The journal also publishes papers in various applications including, but not limited to, algebraic coding theory, cryptology, combinatorial design theory, pseudorandom number generation, and linear recurring sequences. There are other areas of application to be included, but the important point is that finite fields play a nontrivial role in the theory, application, or algorithm.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信