Spherical convolutional neural networks can improve brain microstructure estimation from diffusion MRI data.

Frontiers in neuroimaging Pub Date : 2024-03-14 eCollection Date: 2024-01-01 DOI:10.3389/fnimg.2024.1349415
Leevi Kerkelä, Kiran Seunarine, Filip Szczepankiewicz, Chris A Clark
{"title":"Spherical convolutional neural networks can improve brain microstructure estimation from diffusion MRI data.","authors":"Leevi Kerkelä, Kiran Seunarine, Filip Szczepankiewicz, Chris A Clark","doi":"10.3389/fnimg.2024.1349415","DOIUrl":null,"url":null,"abstract":"<p><p>Diffusion magnetic resonance imaging is sensitive to the microstructural properties of brain tissue. However, estimating clinically and scientifically relevant microstructural properties from the measured signals remains a highly challenging inverse problem that machine learning may help solve. This study investigated if recently developed rotationally invariant spherical convolutional neural networks can improve microstructural parameter estimation. We trained a spherical convolutional neural network to predict the ground-truth parameter values from efficiently simulated noisy data and applied the trained network to imaging data acquired in a clinical setting to generate microstructural parameter maps. Our network performed better than the spherical mean technique and multi-layer perceptron, achieving higher prediction accuracy than the spherical mean technique with less rotational variance than the multi-layer perceptron. Although we focused on a constrained two-compartment model of neuronal tissue, the network and training pipeline are generalizable and can be used to estimate the parameters of any Gaussian compartment model. To highlight this, we also trained the network to predict the parameters of a three-compartment model that enables the estimation of apparent neural soma density using tensor-valued diffusion encoding.</p>","PeriodicalId":73094,"journal":{"name":"Frontiers in neuroimaging","volume":"3 ","pages":"1349415"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10972853/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in neuroimaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fnimg.2024.1349415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Diffusion magnetic resonance imaging is sensitive to the microstructural properties of brain tissue. However, estimating clinically and scientifically relevant microstructural properties from the measured signals remains a highly challenging inverse problem that machine learning may help solve. This study investigated if recently developed rotationally invariant spherical convolutional neural networks can improve microstructural parameter estimation. We trained a spherical convolutional neural network to predict the ground-truth parameter values from efficiently simulated noisy data and applied the trained network to imaging data acquired in a clinical setting to generate microstructural parameter maps. Our network performed better than the spherical mean technique and multi-layer perceptron, achieving higher prediction accuracy than the spherical mean technique with less rotational variance than the multi-layer perceptron. Although we focused on a constrained two-compartment model of neuronal tissue, the network and training pipeline are generalizable and can be used to estimate the parameters of any Gaussian compartment model. To highlight this, we also trained the network to predict the parameters of a three-compartment model that enables the estimation of apparent neural soma density using tensor-valued diffusion encoding.

球形卷积神经网络可改善弥散核磁共振成像数据的大脑微观结构估算。
扩散磁共振成像对脑组织的微观结构特性非常敏感。然而,从测量信号中估计临床和科学相关的微观结构特性仍然是一个极具挑战性的逆问题,而机器学习可能有助于解决这一问题。本研究探讨了最近开发的旋转不变球形卷积神经网络能否改善微结构参数估计。我们训练了一个球形卷积神经网络,以从有效模拟的噪声数据中预测地面真实参数值,并将训练好的网络应用于临床环境中获取的成像数据,生成微结构参数图。我们的网络比球面均值技术和多层感知器表现更好,预测精度高于球面均值技术,旋转方差小于多层感知器。虽然我们的重点是神经元组织的受限两室模型,但该网络和训练管道具有通用性,可用于估计任何高斯室模型的参数。为了突出这一点,我们还训练该网络预测三室模型的参数,该模型可以利用张量值扩散编码估算表观神经体密度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信