Method for optimizing imaging parameters to record neuronal and cellular activity at depth with bioluminescence.

IF 4.8 2区 医学 Q1 NEUROSCIENCES
Neurophotonics Pub Date : 2024-04-01 Epub Date: 2024-03-28 DOI:10.1117/1.NPh.11.2.024206
Alexander D Silvagnoli, Kaylee A Taylor, Ashley N Slaviero, Eric D Petersen
{"title":"Method for optimizing imaging parameters to record neuronal and cellular activity at depth with bioluminescence.","authors":"Alexander D Silvagnoli, Kaylee A Taylor, Ashley N Slaviero, Eric D Petersen","doi":"10.1117/1.NPh.11.2.024206","DOIUrl":null,"url":null,"abstract":"<p><strong>Significance: </strong>Optical imaging has accelerated neuroscience in recent years. Genetically encoded fluorescent activity sensors of calcium, neurotransmitters, and voltage are commonly used for optical recording of neuronal activity. However, fluorescence imaging is limited to superficial regions for <i>in vivo</i> activity imaging, due to photon scattering and absorbance. Bioluminescence imaging offers a promising alternative for achieving activity imaging in deeper brain regions without hardware implanted within the brain. Bioluminescent reporters can be genetically encoded and produce photons without external excitation. The use of enzymatic photon production also enables prolonged imaging sessions without the risk of photobleaching or phototoxicity, making bioluminescence suitable for non-invasive imaging of deep neuronal populations.</p><p><strong>Aim: </strong>To facilitate the adoption of bioluminescent activity imaging, we sought to develop a low cost, simple <i>in vitro</i> method that simulates <i>in vivo</i> conditions to optimize imaging parameters for determining optimal exposure times and optical hardware configurations to determine what frame rates can be captured with an individual lab's imaging hardware with sufficient signal-to-noise ratios without the use of animals prior to starting an <i>in vivo</i> experiment.</p><p><strong>Approach: </strong>We developed an assay for modeling <i>in vivo</i> optical conditions with a brain tissue phantom paired with engineered cells that produce bioluminescence. We then used this assay to limit-test the detection depth versus maximum frame rate for bioluminescence imaging at experimentally relevant tissue depths using off-the-shelf imaging hardware.</p><p><strong>Results: </strong>We developed an assay for modeling <i>in vivo</i> optical conditions with a brain tissue phantom paired with engineered cells that produce bioluminescence. With this method, we demonstrate an effective means for increasing the utility of bioluminescent tools and lowering the barrier to adoption of bioluminescence activity imaging.</p><p><strong>Conclusions: </strong>We demonstrated an improved method for optimizing imaging parameters for activity imaging <i>in vivo</i> with bioluminescent sensors.</p>","PeriodicalId":54335,"journal":{"name":"Neurophotonics","volume":"11 2","pages":"024206"},"PeriodicalIF":4.8000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10976037/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurophotonics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.NPh.11.2.024206","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/28 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Significance: Optical imaging has accelerated neuroscience in recent years. Genetically encoded fluorescent activity sensors of calcium, neurotransmitters, and voltage are commonly used for optical recording of neuronal activity. However, fluorescence imaging is limited to superficial regions for in vivo activity imaging, due to photon scattering and absorbance. Bioluminescence imaging offers a promising alternative for achieving activity imaging in deeper brain regions without hardware implanted within the brain. Bioluminescent reporters can be genetically encoded and produce photons without external excitation. The use of enzymatic photon production also enables prolonged imaging sessions without the risk of photobleaching or phototoxicity, making bioluminescence suitable for non-invasive imaging of deep neuronal populations.

Aim: To facilitate the adoption of bioluminescent activity imaging, we sought to develop a low cost, simple in vitro method that simulates in vivo conditions to optimize imaging parameters for determining optimal exposure times and optical hardware configurations to determine what frame rates can be captured with an individual lab's imaging hardware with sufficient signal-to-noise ratios without the use of animals prior to starting an in vivo experiment.

Approach: We developed an assay for modeling in vivo optical conditions with a brain tissue phantom paired with engineered cells that produce bioluminescence. We then used this assay to limit-test the detection depth versus maximum frame rate for bioluminescence imaging at experimentally relevant tissue depths using off-the-shelf imaging hardware.

Results: We developed an assay for modeling in vivo optical conditions with a brain tissue phantom paired with engineered cells that produce bioluminescence. With this method, we demonstrate an effective means for increasing the utility of bioluminescent tools and lowering the barrier to adoption of bioluminescence activity imaging.

Conclusions: We demonstrated an improved method for optimizing imaging parameters for activity imaging in vivo with bioluminescent sensors.

优化成像参数的方法,利用生物发光技术记录深度神经元和细胞活动。
意义重大:近年来,光学成像加速了神经科学的发展。基因编码的钙离子、神经递质和电压荧光活动传感器通常用于光学记录神经元活动。然而,由于光子散射和吸收的原因,荧光成像仅限于浅表区域的体内活动成像。生物发光成像为在不植入硬件的情况下实现大脑深层区域的活动成像提供了一种很有前景的替代方法。生物发光报告器可进行基因编码,无需外部激发即可产生光子。使用酶法产生光子还能延长成像时间,而不会产生光漂白或光毒性风险,因此生物发光适合对深部神经元群进行无创成像。目的:为了促进生物发光活动成像的应用,我们试图开发一种低成本、简单的体外方法,模拟体内条件来优化成像参数,以确定最佳曝光时间和光学硬件配置,从而确定在开始体内实验之前,无需使用动物,利用实验室的成像硬件就能捕捉到具有足够信噪比的帧频:方法:我们开发了一种检测方法,利用脑组织模型和可产生生物荧光的工程细胞来模拟体内光学条件。然后,我们利用该试验方法,使用现成的成像硬件,在实验相关的组织深度,对生物发光成像的检测深度与最大帧频进行了极限测试:结果:我们开发了一种检测方法,用于模拟体内光学条件,脑组织模型与产生生物荧光的工程细胞配对。通过这种方法,我们展示了提高生物发光工具实用性和降低生物发光活动成像应用门槛的有效手段:我们展示了一种改进的方法,用于优化生物发光传感器体内活动成像的成像参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Neurophotonics
Neurophotonics Neuroscience-Neuroscience (miscellaneous)
CiteScore
7.20
自引率
11.30%
发文量
114
审稿时长
21 weeks
期刊介绍: At the interface of optics and neuroscience, Neurophotonics is a peer-reviewed journal that covers advances in optical technology applicable to study of the brain and their impact on the basic and clinical neuroscience applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信