Combining Cardiovascular and Pupil Features Using k-Nearest Neighbor Classifiers to Assess Task Demand, Social Context, and Sentence Accuracy During Listening.
IF 2.6 2区 医学Q1 AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY
Bethany Plain, Hidde Pielage, Sophia E Kramer, Michael Richter, Gabrielle H Saunders, Niek J Versfeld, Adriana A Zekveld, Tanveer A Bhuiyan
{"title":"Combining Cardiovascular and Pupil Features Using k-Nearest Neighbor Classifiers to Assess Task Demand, Social Context, and Sentence Accuracy During Listening.","authors":"Bethany Plain, Hidde Pielage, Sophia E Kramer, Michael Richter, Gabrielle H Saunders, Niek J Versfeld, Adriana A Zekveld, Tanveer A Bhuiyan","doi":"10.1177/23312165241232551","DOIUrl":null,"url":null,"abstract":"<p><p>In daily life, both acoustic factors and social context can affect listening effort investment. In laboratory settings, information about listening effort has been deduced from pupil and cardiovascular responses independently. The extent to which these measures can jointly predict listening-related factors is unknown. Here we combined pupil and cardiovascular features to predict acoustic and contextual aspects of speech perception. Data were collected from 29 adults (mean = 64.6 years, SD = 9.2) with hearing loss. Participants performed a speech perception task at two individualized signal-to-noise ratios (corresponding to 50% and 80% of sentences correct) and in two social contexts (the presence and absence of two observers). Seven features were extracted per trial: baseline pupil size, peak pupil dilation, mean pupil dilation, interbeat interval, blood volume pulse amplitude, pre-ejection period and pulse arrival time. These features were used to train k-nearest neighbor classifiers to predict task demand, social context and sentence accuracy. The k-fold cross validation on the group-level data revealed above-chance classification accuracies: task demand, 64.4%; social context, 78.3%; and sentence accuracy, 55.1%. However, classification accuracies diminished when the classifiers were trained and tested on data from different participants. Individually trained classifiers (one per participant) performed better than group-level classifiers: 71.7% (SD = 10.2) for task demand, 88.0% (SD = 7.5) for social context, and 60.0% (SD = 13.1) for sentence accuracy. We demonstrated that classifiers trained on group-level physiological data to predict aspects of speech perception generalized poorly to novel participants. Individually calibrated classifiers hold more promise for future applications.</p>","PeriodicalId":48678,"journal":{"name":"Trends in Hearing","volume":"28 ","pages":"23312165241232551"},"PeriodicalIF":2.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10981225/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Hearing","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/23312165241232551","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUDIOLOGY & SPEECH-LANGUAGE PATHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In daily life, both acoustic factors and social context can affect listening effort investment. In laboratory settings, information about listening effort has been deduced from pupil and cardiovascular responses independently. The extent to which these measures can jointly predict listening-related factors is unknown. Here we combined pupil and cardiovascular features to predict acoustic and contextual aspects of speech perception. Data were collected from 29 adults (mean = 64.6 years, SD = 9.2) with hearing loss. Participants performed a speech perception task at two individualized signal-to-noise ratios (corresponding to 50% and 80% of sentences correct) and in two social contexts (the presence and absence of two observers). Seven features were extracted per trial: baseline pupil size, peak pupil dilation, mean pupil dilation, interbeat interval, blood volume pulse amplitude, pre-ejection period and pulse arrival time. These features were used to train k-nearest neighbor classifiers to predict task demand, social context and sentence accuracy. The k-fold cross validation on the group-level data revealed above-chance classification accuracies: task demand, 64.4%; social context, 78.3%; and sentence accuracy, 55.1%. However, classification accuracies diminished when the classifiers were trained and tested on data from different participants. Individually trained classifiers (one per participant) performed better than group-level classifiers: 71.7% (SD = 10.2) for task demand, 88.0% (SD = 7.5) for social context, and 60.0% (SD = 13.1) for sentence accuracy. We demonstrated that classifiers trained on group-level physiological data to predict aspects of speech perception generalized poorly to novel participants. Individually calibrated classifiers hold more promise for future applications.
Trends in HearingAUDIOLOGY & SPEECH-LANGUAGE PATHOLOGYOTORH-OTORHINOLARYNGOLOGY
CiteScore
4.50
自引率
11.10%
发文量
44
审稿时长
12 weeks
期刊介绍:
Trends in Hearing is an open access journal completely dedicated to publishing original research and reviews focusing on human hearing, hearing loss, hearing aids, auditory implants, and aural rehabilitation. Under its former name, Trends in Amplification, the journal established itself as a forum for concise explorations of all areas of translational hearing research by leaders in the field. Trends in Hearing has now expanded its focus to include original research articles, with the goal of becoming the premier venue for research related to human hearing and hearing loss.