Enhanced Wear Properties of an Inspired Fish-Scale Film Structure in Terms of Microstructured Self-Lubrication Induced Effects by High-Speed Laser Surface Remelting Processing

IF 5.3 3区 工程技术 Q1 ENGINEERING, MANUFACTURING
Wei Dai, Chuqiao Fang, Xiao Wu, Zhizhen Zheng, Jianjun Li
{"title":"Enhanced Wear Properties of an Inspired Fish-Scale Film Structure in Terms of Microstructured Self-Lubrication Induced Effects by High-Speed Laser Surface Remelting Processing","authors":"Wei Dai, Chuqiao Fang, Xiao Wu, Zhizhen Zheng, Jianjun Li","doi":"10.1007/s40684-024-00610-2","DOIUrl":null,"url":null,"abstract":"<p>DC53 tool steel has potential applications in mold product manufacturing because of its excellent toughness properties. However, it suffers from poor wear resistance, which limits its wide range of applications. A micron-size fish-scale film structure was designed on the DC53 steel surface and fabricated using crossover laser surface remelting processing to improve its tribological properties. Three kinds of DC53 surfaces, including the as-received, quenched, and fish-scale film structure, were used to evaluate the tribological properties. Specifically, tribological performance was evaluated using a reciprocating sliding tester. The unidirectional ball-on-disc method was employed to assess the wear of the mating surfaces under low-, medium-, and high-load conditions in terms of friction and wear tests. The friction coefficient and the wear rate were recorded to investigate the formation mechanism of tribo-layers. Experimental results demonstrated that the structure combined with microbulges on the DC53 surface had excellent load-bearing capabilities and wear resistance. Energy dispersive spectroscopy following wear tests showed pronounced material transfer from the structured surfaces, with SiO<sub>2</sub> particles filling up some groove voids. The reinforcing layer in the form of nanoscale SiO<sub>2</sub> particles exhibited enhanced performance at higher tribological loads. The synergistic effects of microbulges and SiO<sub>2</sub> films significantly improved the tribological properties of DC53 materials. In addition, the precipitation of SiO<sub>2</sub> contributed to the anti-wear performance of the tool steel surface, which is consistent with the self-lubricating wear mechanism of the worn surface. The laser surface remelting technique enables the fabrication of a micro fish-scale film structure, which has great potential for enhancing the wear resistance and applications of DC53 materials in various fields.</p>","PeriodicalId":14238,"journal":{"name":"International Journal of Precision Engineering and Manufacturing-Green Technology","volume":"1 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Precision Engineering and Manufacturing-Green Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40684-024-00610-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

Abstract

DC53 tool steel has potential applications in mold product manufacturing because of its excellent toughness properties. However, it suffers from poor wear resistance, which limits its wide range of applications. A micron-size fish-scale film structure was designed on the DC53 steel surface and fabricated using crossover laser surface remelting processing to improve its tribological properties. Three kinds of DC53 surfaces, including the as-received, quenched, and fish-scale film structure, were used to evaluate the tribological properties. Specifically, tribological performance was evaluated using a reciprocating sliding tester. The unidirectional ball-on-disc method was employed to assess the wear of the mating surfaces under low-, medium-, and high-load conditions in terms of friction and wear tests. The friction coefficient and the wear rate were recorded to investigate the formation mechanism of tribo-layers. Experimental results demonstrated that the structure combined with microbulges on the DC53 surface had excellent load-bearing capabilities and wear resistance. Energy dispersive spectroscopy following wear tests showed pronounced material transfer from the structured surfaces, with SiO2 particles filling up some groove voids. The reinforcing layer in the form of nanoscale SiO2 particles exhibited enhanced performance at higher tribological loads. The synergistic effects of microbulges and SiO2 films significantly improved the tribological properties of DC53 materials. In addition, the precipitation of SiO2 contributed to the anti-wear performance of the tool steel surface, which is consistent with the self-lubricating wear mechanism of the worn surface. The laser surface remelting technique enables the fabrication of a micro fish-scale film structure, which has great potential for enhancing the wear resistance and applications of DC53 materials in various fields.

Abstract Image

从高速激光表面重熔加工的微结构自润滑诱导效应看鱼鳞片膜结构的磨损性能增强效应
DC53 工具钢具有优异的韧性,因此在模具产品制造中具有潜在的应用价值。然而,它的耐磨性较差,限制了其广泛的应用范围。为了改善 DC53 的摩擦学性能,我们在 DC53 钢表面设计了微米级鱼鳞状薄膜结构,并采用交叉激光表面剥离加工方法制作了这种薄膜。研究人员使用三种不同的 DC53 表面(包括原状、淬火和鱼鳞膜结构)来评估其摩擦学性能。具体而言,使用往复滑动测试仪对摩擦学性能进行了评估。通过摩擦和磨损测试,采用单向球盘法评估了低载、中载和高载条件下配合表面的磨损情况。通过记录摩擦系数和磨损率,研究了三层结构的形成机理。实验结果表明,DC53 表面的微球结合结构具有出色的承载能力和耐磨性。磨损测试后的能量色散光谱显示,结构表面的材料转移明显,二氧化硅颗粒填充了一些沟槽空隙。纳米级 SiO2 颗粒形式的强化层在更高的摩擦载荷下表现出更强的性能。微球和二氧化硅薄膜的协同作用显著改善了 DC53 材料的摩擦学性能。此外,SiO2 的析出促进了工具钢表面的抗磨损性能,这与磨损表面的自润滑磨损机理是一致的。激光表面重熔技术实现了微鱼鳞膜结构的制备,对提高 DC53 材料的耐磨性和在各领域的应用具有巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.30
自引率
9.50%
发文量
65
审稿时长
5.3 months
期刊介绍: Green Technology aspects of precision engineering and manufacturing are becoming ever more important in current and future technologies. New knowledge in this field will aid in the advancement of various technologies that are needed to gain industrial competitiveness. To this end IJPEM - Green Technology aims to disseminate relevant developments and applied research works of high quality to the international community through efficient and rapid publication. IJPEM - Green Technology covers novel research contributions in all aspects of "Green" precision engineering and manufacturing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信