Personalized Early Warning of Learning Performance for College Students: A Multilevel Approach via Cognitive Ability and Learning State Modeling

IF 2.9 3区 教育学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Hua Ma;Wen Zhao;Yuqi Tang;Peiji Huang;Haibin Zhu;Wensheng Tang;Keqin Li
{"title":"Personalized Early Warning of Learning Performance for College Students: A Multilevel Approach via Cognitive Ability and Learning State Modeling","authors":"Hua Ma;Wen Zhao;Yuqi Tang;Peiji Huang;Haibin Zhu;Wensheng Tang;Keqin Li","doi":"10.1109/TLT.2024.3382217","DOIUrl":null,"url":null,"abstract":"To prevent students from learning risks and improve teachers' teaching quality, it is of great significance to provide accurate early warning of learning performance to students by analyzing their interactions through an e-learning system. In existing research, the correlations between learning risks and students' changing cognitive abilities or learning states are still underexplored, and the personalized early warning is unavailable for students at different levels. To accurately identify the possible learning risks faced by students at different levels, this article proposes a personalized early warning approach to learning performance for college students via cognitive ability and learning state modeling. In this approach, students' learning process data and historical performance data are analyzed to track students' cognitive abilities in the whole learning process, and model their learning states from four dimensions, i.e., learning quality, learning engagement, latent learning state, and historical learning state. Then, the Adaboost algorithm is used to predict students' learning performance, and an evaluation rule with five levels is designed to dynamically provide multilevel personalized early warning to students. Finally, the comparative experiments based on real-world datasets demonstrate that the proposed approach could effectively predict all students' learning performance, and provide accurate early warning services to them.","PeriodicalId":49191,"journal":{"name":"IEEE Transactions on Learning Technologies","volume":"17 ","pages":"1440-1453"},"PeriodicalIF":2.9000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Learning Technologies","FirstCategoryId":"95","ListUrlMain":"https://ieeexplore.ieee.org/document/10480581/","RegionNum":3,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

To prevent students from learning risks and improve teachers' teaching quality, it is of great significance to provide accurate early warning of learning performance to students by analyzing their interactions through an e-learning system. In existing research, the correlations between learning risks and students' changing cognitive abilities or learning states are still underexplored, and the personalized early warning is unavailable for students at different levels. To accurately identify the possible learning risks faced by students at different levels, this article proposes a personalized early warning approach to learning performance for college students via cognitive ability and learning state modeling. In this approach, students' learning process data and historical performance data are analyzed to track students' cognitive abilities in the whole learning process, and model their learning states from four dimensions, i.e., learning quality, learning engagement, latent learning state, and historical learning state. Then, the Adaboost algorithm is used to predict students' learning performance, and an evaluation rule with five levels is designed to dynamically provide multilevel personalized early warning to students. Finally, the comparative experiments based on real-world datasets demonstrate that the proposed approach could effectively predict all students' learning performance, and provide accurate early warning services to them.
大学生学习成绩的个性化预警:通过认知能力和学习状态建模的多层次方法
为了防范学生的学习风险,提高教师的教学质量,通过网络学习系统分析学生的互动情况,为学生提供准确的学习表现预警具有重要意义。在现有的研究中,学习风险与学生认知能力或学习状态变化之间的相关性还没有得到充分的探讨,也没有针对不同层次学生的个性化预警。为了准确识别不同层次学生可能面临的学习风险,本文提出了一种通过认知能力和学习状态建模对大学生学习表现进行个性化预警的方法。该方法通过分析学生的学习过程数据和历史成绩数据,跟踪学生在整个学习过程中的认知能力,并从学习质量、学习参与度、潜在学习状态和历史学习状态四个维度对学生的学习状态进行建模。然后,利用 Adaboost 算法预测学生的学习成绩,并设计出五级评价规则,动态地为学生提供多层次的个性化预警。最后,基于真实世界数据集的对比实验证明,所提出的方法能有效预测所有学生的学习成绩,并为他们提供准确的预警服务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Learning Technologies
IEEE Transactions on Learning Technologies COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
CiteScore
7.50
自引率
5.40%
发文量
82
审稿时长
>12 weeks
期刊介绍: The IEEE Transactions on Learning Technologies covers all advances in learning technologies and their applications, including but not limited to the following topics: innovative online learning systems; intelligent tutors; educational games; simulation systems for education and training; collaborative learning tools; learning with mobile devices; wearable devices and interfaces for learning; personalized and adaptive learning systems; tools for formative and summative assessment; tools for learning analytics and educational data mining; ontologies for learning systems; standards and web services that support learning; authoring tools for learning materials; computer support for peer tutoring; learning via computer-mediated inquiry, field, and lab work; social learning techniques; social networks and infrastructures for learning and knowledge sharing; and creation and management of learning objects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信