Fault-Tolerant Control for Carrier-Based Aircraft Automatic Landing Subject to Multiple Disturbances and Actuator Faults

IF 1.1 4区 工程技术 Q3 ENGINEERING, AEROSPACE
Qilong Wu, Qidan Zhu
{"title":"Fault-Tolerant Control for Carrier-Based Aircraft Automatic Landing Subject to Multiple Disturbances and Actuator Faults","authors":"Qilong Wu, Qidan Zhu","doi":"10.1155/2024/2054883","DOIUrl":null,"url":null,"abstract":"This paper introduces a fault-tolerant control scheme for the automatic carrier landing of carrier-based aircraft using direct lift control. The scheme combines radial basis function neural network and active disturbance rejection control (RBF-ADRC) to overcome the impact of actuator failures and external disturbances. First, the carrier-based aircraft model, the carrier air-wake model, and the actuator fault model were established. Secondly, ADRC is designed to estimate and compensate for actuator faults and disturbances in real time. RBFNN adjusts the ADRC controller parameters based on the system state. Then, the Lyapunov function is constructed to prove the stability of the closed-loop system. The controller is applied to the direct lift control channel, auxiliary attitude channel, and approach power compensation system. The direct lift control improves the performance of fixed-wing aircraft. Finally, comparative simulations were conducted under various actuator failures. The results demonstrate the remarkable fault tolerance of the RBF-ADRC scheme, enabling precise tracking of the desired glide path by the shipboard aircraft even in the presence of actuator failures.","PeriodicalId":13748,"journal":{"name":"International Journal of Aerospace Engineering","volume":"109 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Aerospace Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/2054883","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

This paper introduces a fault-tolerant control scheme for the automatic carrier landing of carrier-based aircraft using direct lift control. The scheme combines radial basis function neural network and active disturbance rejection control (RBF-ADRC) to overcome the impact of actuator failures and external disturbances. First, the carrier-based aircraft model, the carrier air-wake model, and the actuator fault model were established. Secondly, ADRC is designed to estimate and compensate for actuator faults and disturbances in real time. RBFNN adjusts the ADRC controller parameters based on the system state. Then, the Lyapunov function is constructed to prove the stability of the closed-loop system. The controller is applied to the direct lift control channel, auxiliary attitude channel, and approach power compensation system. The direct lift control improves the performance of fixed-wing aircraft. Finally, comparative simulations were conducted under various actuator failures. The results demonstrate the remarkable fault tolerance of the RBF-ADRC scheme, enabling precise tracking of the desired glide path by the shipboard aircraft even in the presence of actuator failures.
受多重干扰和执行器故障影响的航母舰载机自动着陆的容错控制
本文介绍了一种利用直接升力控制实现舰载机自动着陆的容错控制方案。该方案将径向基函数神经网络和主动干扰抑制控制(RBF-ADRC)相结合,以克服作动器故障和外部干扰的影响。首先,建立了舰载机模型、舰载机空中晃动模型和作动器故障模型。其次,设计了 ADRC 来实时估计和补偿作动器故障和干扰。RBFNN 根据系统状态调整 ADRC 控制器参数。然后,构建 Lyapunov 函数来证明闭环系统的稳定性。该控制器适用于直接升力控制通道、辅助姿态通道和进场功率补偿系统。直接升力控制提高了固定翼飞机的性能。最后,对各种作动器故障进行了比较模拟。结果表明,RBF-ADRC 方案具有出色的容错能力,即使在致动器出现故障的情况下,舰载机也能精确跟踪所需的滑行路径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
7.10%
发文量
195
审稿时长
22 weeks
期刊介绍: International Journal of Aerospace Engineering aims to serve the international aerospace engineering community through dissemination of scientific knowledge on practical engineering and design methodologies pertaining to aircraft and space vehicles. Original unpublished manuscripts are solicited on all areas of aerospace engineering including but not limited to: -Mechanics of materials and structures- Aerodynamics and fluid mechanics- Dynamics and control- Aeroacoustics- Aeroelasticity- Propulsion and combustion- Avionics and systems- Flight simulation and mechanics- Unmanned air vehicles (UAVs). Review articles on any of the above topics are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信