Convolutional neural network for retrieval of the time-dependent bond length in a molecule from photoelectron momentum distributions

IF 1.5 4区 物理与天体物理 Q3 OPTICS
N I Shvetsov-Shilovski, M Lein
{"title":"Convolutional neural network for retrieval of the time-dependent bond length in a molecule from photoelectron momentum distributions","authors":"N I Shvetsov-Shilovski, M Lein","doi":"10.1088/1361-6455/ad2e30","DOIUrl":null,"url":null,"abstract":"We apply deep learning for retrieval of the time-dependent bond length in the dissociating two-dimensional H<inline-formula>\n<tex-math><?CDATA $_2^{+}$?></tex-math>\n<mml:math overflow=\"scroll\"><mml:msubsup><mml:mi></mml:mi><mml:mn>2</mml:mn><mml:mrow><mml:mo>+</mml:mo></mml:mrow></mml:msubsup></mml:math>\n<inline-graphic xlink:href=\"bad2e30ieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> molecule using photoelectron momentum distributions. We consider a pump-probe scheme and calculate electron momentum distributions from strong-field ionization by treating the motion of the nuclei classically, semiclassically or quantum mechanically. A convolutional neural network trained on momentum distributions obtained at fixed internuclear distances retrieves the time-varying bond length with an absolute error of 0.2–0.3 a.u.","PeriodicalId":16826,"journal":{"name":"Journal of Physics B: Atomic, Molecular and Optical Physics","volume":"44 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics B: Atomic, Molecular and Optical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6455/ad2e30","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

We apply deep learning for retrieval of the time-dependent bond length in the dissociating two-dimensional H 2+ molecule using photoelectron momentum distributions. We consider a pump-probe scheme and calculate electron momentum distributions from strong-field ionization by treating the motion of the nuclei classically, semiclassically or quantum mechanically. A convolutional neural network trained on momentum distributions obtained at fixed internuclear distances retrieves the time-varying bond length with an absolute error of 0.2–0.3 a.u.
从光电子动量分布检索分子中随时间变化的键长的卷积神经网络
我们应用深度学习,利用光电子动量分布检索解离二维 H2+ 分子中随时间变化的键长。我们考虑了泵探针方案,并通过经典、半经典或量子力学处理原子核运动来计算强场电离产生的电子动量分布。在固定核间距下获得的动量分布上训练的卷积神经网络可以检索出随时间变化的键长,绝对误差为 0.2-0.3 a.u。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.60
自引率
6.20%
发文量
182
审稿时长
2.8 months
期刊介绍: Published twice-monthly (24 issues per year), Journal of Physics B: Atomic, Molecular and Optical Physics covers the study of atoms, ions, molecules and clusters, and their structure and interactions with particles, photons or fields. The journal also publishes articles dealing with those aspects of spectroscopy, quantum optics and non-linear optics, laser physics, astrophysics, plasma physics, chemical physics, optical cooling and trapping and other investigations where the objects of study are the elementary atomic, ionic or molecular properties of processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信