Vector gap solitons of spin-orbit-coupled Bose-Einstein condensate in square optical lattice

IF 1.5 4区 物理与天体物理 Q3 OPTICS
Qingqing Wang, Pu Tu, Jinping Ma, Kaihua Shao, Xi Zhao, Baolong Xi, Yan Song, Yuren Shi
{"title":"Vector gap solitons of spin-orbit-coupled Bose-Einstein condensate in square optical lattice","authors":"Qingqing Wang, Pu Tu, Jinping Ma, Kaihua Shao, Xi Zhao, Baolong Xi, Yan Song, Yuren Shi","doi":"10.1088/1361-6455/ad2e2c","DOIUrl":null,"url":null,"abstract":"Vector gap solitons in quasi-two-dimensional Bose–Einstein condensate loaded in a square optical lattice with spin-orbit and Rabi coupling are investigated theoretically. The solitons are obtained by the Newton-Conjugate-Gradient method for various physical parameters. The stability properties of gap solitons are theoretically analyzed by direct nonlinear dynamical evolution. It is found that the existence of gap solitons is sensitive to the spin-orbit and Rabi coupling strength. Smaller Rabi coupling strength is beneficial for the excitation of solitons in the semi-infinite gap. Conversely, larger Rabi coupling strength is beneficial for the soliton excitation in the first gap. The dynamical stability of these gap solitons depends on the spin-orbit and Rabi coupling strength, and the location of the soliton in the bandgap. These findings may contribute to understanding the topological excitations in condensed matter systems.","PeriodicalId":16826,"journal":{"name":"Journal of Physics B: Atomic, Molecular and Optical Physics","volume":"15 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics B: Atomic, Molecular and Optical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6455/ad2e2c","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Vector gap solitons in quasi-two-dimensional Bose–Einstein condensate loaded in a square optical lattice with spin-orbit and Rabi coupling are investigated theoretically. The solitons are obtained by the Newton-Conjugate-Gradient method for various physical parameters. The stability properties of gap solitons are theoretically analyzed by direct nonlinear dynamical evolution. It is found that the existence of gap solitons is sensitive to the spin-orbit and Rabi coupling strength. Smaller Rabi coupling strength is beneficial for the excitation of solitons in the semi-infinite gap. Conversely, larger Rabi coupling strength is beneficial for the soliton excitation in the first gap. The dynamical stability of these gap solitons depends on the spin-orbit and Rabi coupling strength, and the location of the soliton in the bandgap. These findings may contribute to understanding the topological excitations in condensed matter systems.
方形光晶格中自旋轨道耦合玻色-爱因斯坦凝聚态的矢量间隙孤子
本文从理论上研究了装载在具有自旋轨道和拉比耦合的方形光学晶格中的准二维玻色-爱因斯坦凝聚态的矢量间隙孤子。通过牛顿-共轭-梯度法获得了不同物理参数下的孤子。通过直接非线性动力学演化,从理论上分析了间隙孤子的稳定性。研究发现,间隙孤子的存在对自旋轨道和拉比耦合强度很敏感。较小的拉比耦合强度有利于在半无限间隙中激发孤子。相反,较大的拉比耦合强度有利于在第一间隙中激发孤子。这些间隙孤子的动力学稳定性取决于自旋轨道和拉比耦合强度,以及孤子在带隙中的位置。这些发现可能有助于理解凝聚态系统中的拓扑激发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.60
自引率
6.20%
发文量
182
审稿时长
2.8 months
期刊介绍: Published twice-monthly (24 issues per year), Journal of Physics B: Atomic, Molecular and Optical Physics covers the study of atoms, ions, molecules and clusters, and their structure and interactions with particles, photons or fields. The journal also publishes articles dealing with those aspects of spectroscopy, quantum optics and non-linear optics, laser physics, astrophysics, plasma physics, chemical physics, optical cooling and trapping and other investigations where the objects of study are the elementary atomic, ionic or molecular properties of processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信