Pre-existing ground cracks as lava flow pathways at Kīlauea in 2014

IF 3.6 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Tim R. Orr, Edward W. Llewellin, Kyle R. Anderson, Matthew R. Patrick
{"title":"Pre-existing ground cracks as lava flow pathways at Kīlauea in 2014","authors":"Tim R. Orr, Edward W. Llewellin, Kyle R. Anderson, Matthew R. Patrick","doi":"10.1007/s00445-024-01725-9","DOIUrl":null,"url":null,"abstract":"<p>In 2014, the Pāhoa lava flow at Kīlauea, on the Island of Hawaiʻi (USA), entered a string of pre-existing meter-width ground cracks in the volcano’s East Rift Zone. The ground cracks transported lava below the surface in a direction discordant to the slope of the landscape. The cracks, which were 100s of meters long and 10s to 100s of meters deep, also widened by up to several meters as they filled, probably in part at the expense of adjacent cracks, which likely closed. Widening of the cracks caused shallow crustal blocks on the volcano’s flank to shift—this deformation was captured by a nearby GPS station and a borehole tiltmeter. The GPS station moved away from the cracks in response, while the tiltmeter showed tilting toward the cracks, consistent with opening. Noting that the lava-filled cracks act as top-fed dikes, we adapt existing theory for the thermo-rheological evolution of dikes to analyze transport of lava captured by ground cracks and propose mechanisms for the exit of the lava back to the surface. This study shows that ground cracks as narrow as 50 cm wide can facilitate the transport of advancing lava flows and can carry lava in directions that differ from those expected based on surface topography, invalidating flow path projections based on the assumption of subaerial flow.</p>","PeriodicalId":55297,"journal":{"name":"Bulletin of Volcanology","volume":"25 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Volcanology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00445-024-01725-9","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In 2014, the Pāhoa lava flow at Kīlauea, on the Island of Hawaiʻi (USA), entered a string of pre-existing meter-width ground cracks in the volcano’s East Rift Zone. The ground cracks transported lava below the surface in a direction discordant to the slope of the landscape. The cracks, which were 100s of meters long and 10s to 100s of meters deep, also widened by up to several meters as they filled, probably in part at the expense of adjacent cracks, which likely closed. Widening of the cracks caused shallow crustal blocks on the volcano’s flank to shift—this deformation was captured by a nearby GPS station and a borehole tiltmeter. The GPS station moved away from the cracks in response, while the tiltmeter showed tilting toward the cracks, consistent with opening. Noting that the lava-filled cracks act as top-fed dikes, we adapt existing theory for the thermo-rheological evolution of dikes to analyze transport of lava captured by ground cracks and propose mechanisms for the exit of the lava back to the surface. This study shows that ground cracks as narrow as 50 cm wide can facilitate the transport of advancing lava flows and can carry lava in directions that differ from those expected based on surface topography, invalidating flow path projections based on the assumption of subaerial flow.

Abstract Image

2014 年基劳埃阿作为熔岩流通道的原有地面裂缝
2014 年,美国夏威夷岛基劳埃阿火山的帕霍亚熔岩流进入了火山东裂谷区一连串预先存在的米宽地面裂缝。地面裂缝将熔岩输送到地表以下,方向与地形坡度不一致。这些裂缝长达 100 多米,深 10 多米到 100 多米,在填充过程中,裂缝扩大了多达数米,这可能部分是以邻近裂缝的闭合为代价的。裂缝的扩大导致火山侧面的浅地壳块发生位移--附近的全球定位系统站和钻孔倾斜仪捕捉到了这种变形。全球定位系统站随之远离裂缝,而倾斜仪则显示向裂缝倾斜,这与裂缝打开的情况一致。我们注意到充满熔岩的裂缝就像一个顶端进水的堤坝,因此我们调整了现有的堤坝热流变演化理论来分析被地面裂缝捕获的熔岩的传输,并提出了熔岩返回地面的机制。这项研究表明,窄至 50 厘米宽的地面裂缝可促进前进熔岩流的输送,并可将熔岩输送到与根据地表地形所预期的方向不同的方向,从而使根据地面下流动假设所做的流动路径预测失效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Bulletin of Volcanology
Bulletin of Volcanology 地学-地球科学综合
CiteScore
6.40
自引率
20.00%
发文量
89
审稿时长
4-8 weeks
期刊介绍: Bulletin of Volcanology was founded in 1922, as Bulletin Volcanologique, and is the official journal of the International Association of Volcanology and Chemistry of the Earth’s Interior (IAVCEI). The Bulletin of Volcanology publishes papers on volcanoes, their products, their eruptive behavior, and their hazards. Papers aimed at understanding the deeper structure of volcanoes, and the evolution of magmatic systems using geochemical, petrological, and geophysical techniques are also published. Material is published in four sections: Review Articles; Research Articles; Short Scientific Communications; and a Forum that provides for discussion of controversial issues and for comment and reply on previously published Articles and Communications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信