Piermarco Cannarsa, Anna Doubova, Masahiro Yamamoto
{"title":"Reconstruction of degenerate conductivity region for parabolic equations","authors":"Piermarco Cannarsa, Anna Doubova, Masahiro Yamamoto","doi":"10.1088/1361-6420/ad308a","DOIUrl":null,"url":null,"abstract":"We consider an inverse problem of reconstructing a degeneracy point in the diffusion coefficient in a one-dimensional parabolic equation by measuring the normal derivative on one side of the domain boundary. We analyze the sensitivity of the inverse problem to the initial data. We give sufficient conditions on the initial data for uniqueness and stability for the one-point measurement and show some examples of positive and negative results. On the other hand, we present more general uniqueness results, also for the identification of an initial data by measurements distributed over time. The proofs are based on an explicit form of the solution by means of Bessel functions of the first type. Finally, the theoretical results are supported by numerical experiments.","PeriodicalId":50275,"journal":{"name":"Inverse Problems","volume":"53 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1088/1361-6420/ad308a","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We consider an inverse problem of reconstructing a degeneracy point in the diffusion coefficient in a one-dimensional parabolic equation by measuring the normal derivative on one side of the domain boundary. We analyze the sensitivity of the inverse problem to the initial data. We give sufficient conditions on the initial data for uniqueness and stability for the one-point measurement and show some examples of positive and negative results. On the other hand, we present more general uniqueness results, also for the identification of an initial data by measurements distributed over time. The proofs are based on an explicit form of the solution by means of Bessel functions of the first type. Finally, the theoretical results are supported by numerical experiments.
期刊介绍:
An interdisciplinary journal combining mathematical and experimental papers on inverse problems with theoretical, numerical and practical approaches to their solution.
As well as applied mathematicians, physical scientists and engineers, the readership includes those working in geophysics, radar, optics, biology, acoustics, communication theory, signal processing and imaging, among others.
The emphasis is on publishing original contributions to methods of solving mathematical, physical and applied problems. To be publishable in this journal, papers must meet the highest standards of scientific quality, contain significant and original new science and should present substantial advancement in the field. Due to the broad scope of the journal, we require that authors provide sufficient introductory material to appeal to the wide readership and that articles which are not explicitly applied include a discussion of possible applications.