Sabrina Zumbo, Stefano Mandija, Tommaso Isernia, Martina T Bevacqua
{"title":"MiPhDUO: microwave imaging via physics-informed deep unrolled optimization","authors":"Sabrina Zumbo, Stefano Mandija, Tommaso Isernia, Martina T Bevacqua","doi":"10.1088/1361-6420/ad2b99","DOIUrl":null,"url":null,"abstract":"Microwave imaging (MWI) is a non-invasive technique that can identify unknown scatterer objects’ features while offering advantages such as low cost and portable devices with respect to other imaging methods. However, MWI faces challenges in solving the underlying inverse scattering problem, which involves recovering target properties from its scattered fields. Existing methods include linearized and non-linear optimization approaches, but they have limitations respectively in terms of range of validity and computational complexity (in view of the possible occurrence of ‘false solutions’). In recent years, learning-based approaches have emerged as they can allow real-time imaging but usually lack generalizability and a direct connection to the underlying physics. This paper proposes a physics-informed approach that combines convolutional neural networks with physics-based calculations. It is based on a few cascaded operations, making use of the gradient of the relevant cost function, and successively improving the estimation of the unknown target. The proposed approach is assessed using simulated as well as experimental Fresnel data. The results show that the integration of physics with deep learning can contribute to improve reconstruction accuracy, generalizability, and computational efficiency in MWI.","PeriodicalId":50275,"journal":{"name":"Inverse Problems","volume":"51 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1088/1361-6420/ad2b99","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Microwave imaging (MWI) is a non-invasive technique that can identify unknown scatterer objects’ features while offering advantages such as low cost and portable devices with respect to other imaging methods. However, MWI faces challenges in solving the underlying inverse scattering problem, which involves recovering target properties from its scattered fields. Existing methods include linearized and non-linear optimization approaches, but they have limitations respectively in terms of range of validity and computational complexity (in view of the possible occurrence of ‘false solutions’). In recent years, learning-based approaches have emerged as they can allow real-time imaging but usually lack generalizability and a direct connection to the underlying physics. This paper proposes a physics-informed approach that combines convolutional neural networks with physics-based calculations. It is based on a few cascaded operations, making use of the gradient of the relevant cost function, and successively improving the estimation of the unknown target. The proposed approach is assessed using simulated as well as experimental Fresnel data. The results show that the integration of physics with deep learning can contribute to improve reconstruction accuracy, generalizability, and computational efficiency in MWI.
期刊介绍:
An interdisciplinary journal combining mathematical and experimental papers on inverse problems with theoretical, numerical and practical approaches to their solution.
As well as applied mathematicians, physical scientists and engineers, the readership includes those working in geophysics, radar, optics, biology, acoustics, communication theory, signal processing and imaging, among others.
The emphasis is on publishing original contributions to methods of solving mathematical, physical and applied problems. To be publishable in this journal, papers must meet the highest standards of scientific quality, contain significant and original new science and should present substantial advancement in the field. Due to the broad scope of the journal, we require that authors provide sufficient introductory material to appeal to the wide readership and that articles which are not explicitly applied include a discussion of possible applications.