Clemens Arndt, Sören Dittmer, Nick Heilenkötter, Meira Iske, Tobias Kluth, Judith Nickel
{"title":"Bayesian view on the training of invertible residual networks for solving linear inverse problems *","authors":"Clemens Arndt, Sören Dittmer, Nick Heilenkötter, Meira Iske, Tobias Kluth, Judith Nickel","doi":"10.1088/1361-6420/ad2aaa","DOIUrl":null,"url":null,"abstract":"Learning-based methods for inverse problems, adapting to the data’s inherent structure, have become ubiquitous in the last decade. Besides empirical investigations of their often remarkable performance, an increasing number of works address the issue of theoretical guarantees. Recently, Arndt <italic toggle=\"yes\">et al</italic> (2023 <italic toggle=\"yes\">Inverse Problems</italic>\n<bold>39</bold> 125018) exploited invertible residual networks (iResNets) to learn provably convergent regularizations given reasonable assumptions. They enforced these guarantees by approximating the linear forward operator with an iResNet. Supervised training on relevant samples introduces data dependency into the approach. An open question in this context is to which extent the data’s inherent structure influences the training outcome, i.e. the learned reconstruction scheme. Here, we address this delicate interplay of training design and data dependency from a Bayesian perspective and shed light on opportunities and limitations. We resolve these limitations by analyzing reconstruction-based training of the inverses of iResNets, where we show that this optimization strategy introduces a level of data-dependency that cannot be achieved by approximation training. We further provide and discuss a series of numerical experiments underpinning and extending the theoretical findings.","PeriodicalId":50275,"journal":{"name":"Inverse Problems","volume":"107 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1088/1361-6420/ad2aaa","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Learning-based methods for inverse problems, adapting to the data’s inherent structure, have become ubiquitous in the last decade. Besides empirical investigations of their often remarkable performance, an increasing number of works address the issue of theoretical guarantees. Recently, Arndt et al (2023 Inverse Problems39 125018) exploited invertible residual networks (iResNets) to learn provably convergent regularizations given reasonable assumptions. They enforced these guarantees by approximating the linear forward operator with an iResNet. Supervised training on relevant samples introduces data dependency into the approach. An open question in this context is to which extent the data’s inherent structure influences the training outcome, i.e. the learned reconstruction scheme. Here, we address this delicate interplay of training design and data dependency from a Bayesian perspective and shed light on opportunities and limitations. We resolve these limitations by analyzing reconstruction-based training of the inverses of iResNets, where we show that this optimization strategy introduces a level of data-dependency that cannot be achieved by approximation training. We further provide and discuss a series of numerical experiments underpinning and extending the theoretical findings.
期刊介绍:
An interdisciplinary journal combining mathematical and experimental papers on inverse problems with theoretical, numerical and practical approaches to their solution.
As well as applied mathematicians, physical scientists and engineers, the readership includes those working in geophysics, radar, optics, biology, acoustics, communication theory, signal processing and imaging, among others.
The emphasis is on publishing original contributions to methods of solving mathematical, physical and applied problems. To be publishable in this journal, papers must meet the highest standards of scientific quality, contain significant and original new science and should present substantial advancement in the field. Due to the broad scope of the journal, we require that authors provide sufficient introductory material to appeal to the wide readership and that articles which are not explicitly applied include a discussion of possible applications.