{"title":"Characteristics of crack growth in brittle solids with the effects of material heterogeneity and multi-crack interaction","authors":"Luyu Wang, Zhen-Yu Yin, Weizhong Chen","doi":"10.1007/s10704-024-00771-w","DOIUrl":null,"url":null,"abstract":"<div><p>Despite the extensive research on crack propagation in brittle solids, numerous unexplored problems still necessitate in-depth study. In this work, we focus on numerical modeling of multi-crack growth, aiming to explore the effect of material heterogeneity and multi-crack interaction on this process. To do this, an improved singular-finite element method (singular-FEM) is proposed with incorporation of heterogeneity and crack interaction. An efficient algorithm is proposed for simulating multi-crack propagation and interaction. Stress singularity near crack tip is reproduced by the singular elements. The singular-FEM is convenient and cost-effective, as the zone far away from crack tips is directly discretized using linear elements, in contrast to the quadratic or transition elements utilized in traditional FEM. Next, the proposed method is validated through benchmark study. Numerical results demonstrate that the superiority of the singular-FEM, which combines the merits of low cost and high accuracy. Then, the mechanics of crack growth are explored in more complex scenarios, accounting for the effects of crack interaction, loading condition and heterogeneity on crack trajectory, stress field and energy release rate. The findings reveal that the combined effect of heterogeneity and crack interaction plays a critical role in the phenomenon of crack growth, and the proposed method is capable of effectively modeling the process.</p></div>","PeriodicalId":590,"journal":{"name":"International Journal of Fracture","volume":"246 1","pages":"77 - 99"},"PeriodicalIF":2.2000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10704-024-00771-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fracture","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10704-024-00771-w","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Despite the extensive research on crack propagation in brittle solids, numerous unexplored problems still necessitate in-depth study. In this work, we focus on numerical modeling of multi-crack growth, aiming to explore the effect of material heterogeneity and multi-crack interaction on this process. To do this, an improved singular-finite element method (singular-FEM) is proposed with incorporation of heterogeneity and crack interaction. An efficient algorithm is proposed for simulating multi-crack propagation and interaction. Stress singularity near crack tip is reproduced by the singular elements. The singular-FEM is convenient and cost-effective, as the zone far away from crack tips is directly discretized using linear elements, in contrast to the quadratic or transition elements utilized in traditional FEM. Next, the proposed method is validated through benchmark study. Numerical results demonstrate that the superiority of the singular-FEM, which combines the merits of low cost and high accuracy. Then, the mechanics of crack growth are explored in more complex scenarios, accounting for the effects of crack interaction, loading condition and heterogeneity on crack trajectory, stress field and energy release rate. The findings reveal that the combined effect of heterogeneity and crack interaction plays a critical role in the phenomenon of crack growth, and the proposed method is capable of effectively modeling the process.
期刊介绍:
The International Journal of Fracture is an outlet for original analytical, numerical and experimental contributions which provide improved understanding of the mechanisms of micro and macro fracture in all materials, and their engineering implications.
The Journal is pleased to receive papers from engineers and scientists working in various aspects of fracture. Contributions emphasizing empirical correlations, unanalyzed experimental results or routine numerical computations, while representing important necessary aspects of certain fatigue, strength, and fracture analyses, will normally be discouraged; occasional review papers in these as well as other areas are welcomed. Innovative and in-depth engineering applications of fracture theory are also encouraged.
In addition, the Journal welcomes, for rapid publication, Brief Notes in Fracture and Micromechanics which serve the Journal''s Objective. Brief Notes include: Brief presentation of a new idea, concept or method; new experimental observations or methods of significance; short notes of quality that do not amount to full length papers; discussion of previously published work in the Journal, and Brief Notes Errata.