An Emerging Role for Enhancer RNAs in Brain Disorders

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Ankit Patel, Ashutosh Dharap
{"title":"An Emerging Role for Enhancer RNAs in Brain Disorders","authors":"Ankit Patel, Ashutosh Dharap","doi":"10.1007/s12017-024-08776-3","DOIUrl":null,"url":null,"abstract":"<p>Noncoding DNA undergoes widespread context-dependent transcription to produce noncoding RNAs. In recent decades, tremendous advances in genomics and transcriptomics have revealed important regulatory roles for noncoding DNA elements and the RNAs that they produce. Enhancers are one such element that are well-established drivers of gene expression changes in response to a variety of factors such as external stimuli, cellular responses, developmental cues, and disease states. They are known to act at long distances, interact with multiple target gene loci simultaneously, synergize with other enhancers, and associate with dynamic chromatin architectures to form a complex regulatory network. Recent advances in enhancer biology have revealed that upon activation, enhancers transcribe long noncoding RNAs, known as enhancer RNAs (eRNAs), that have been shown to play important roles in enhancer-mediated gene regulation and chromatin-modifying activities. In the brain, enhancer dysregulation and eRNA transcription has been reported in numerous disorders from acute injuries to chronic neurodegeneration. Because this is an emerging area, a comprehensive understanding of eRNA function has not yet been achieved in brain disorders; however, the findings to date have illuminated a role for eRNAs in activity-driven gene expression and phenotypic outcomes. In this review, we highlight the breadth of the current literature on eRNA biology in brain health and disease and discuss the challenges as well as focus areas and strategies for future in-depth research on eRNAs in brain health and disease.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12017-024-08776-3","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Noncoding DNA undergoes widespread context-dependent transcription to produce noncoding RNAs. In recent decades, tremendous advances in genomics and transcriptomics have revealed important regulatory roles for noncoding DNA elements and the RNAs that they produce. Enhancers are one such element that are well-established drivers of gene expression changes in response to a variety of factors such as external stimuli, cellular responses, developmental cues, and disease states. They are known to act at long distances, interact with multiple target gene loci simultaneously, synergize with other enhancers, and associate with dynamic chromatin architectures to form a complex regulatory network. Recent advances in enhancer biology have revealed that upon activation, enhancers transcribe long noncoding RNAs, known as enhancer RNAs (eRNAs), that have been shown to play important roles in enhancer-mediated gene regulation and chromatin-modifying activities. In the brain, enhancer dysregulation and eRNA transcription has been reported in numerous disorders from acute injuries to chronic neurodegeneration. Because this is an emerging area, a comprehensive understanding of eRNA function has not yet been achieved in brain disorders; however, the findings to date have illuminated a role for eRNAs in activity-driven gene expression and phenotypic outcomes. In this review, we highlight the breadth of the current literature on eRNA biology in brain health and disease and discuss the challenges as well as focus areas and strategies for future in-depth research on eRNAs in brain health and disease.

Abstract Image

增强子 RNA 在脑部疾病中的新作用
非编码 DNA 经过广泛的上下文依赖性转录产生非编码 RNA。近几十年来,基因组学和转录组学的巨大进步揭示了非编码DNA元件及其产生的RNA的重要调控作用。增强子就是这样一种元素,它们是基因表达变化的公认驱动因素,可对外界刺激、细胞反应、发育线索和疾病状态等多种因素做出反应。众所周知,增强子作用距离远,可同时与多个目标基因位点相互作用,与其他增强子协同作用,并与动态染色质结构结合形成复杂的调控网络。增强子生物学的最新进展显示,增强子在激活后会转录长的非编码 RNA,即增强子 RNA(eRNA),这些 RNA 在增强子介导的基因调控和染色质修饰活动中发挥重要作用。在大脑中,从急性损伤到慢性神经变性等多种疾病中都有增强子失调和 eRNA 转录的报道。由于这是一个新兴领域,人们尚未全面了解 eRNA 在脑部疾病中的功能;不过,迄今为止的研究结果已经揭示了 eRNA 在活动驱动的基因表达和表型结果中的作用。在这篇综述中,我们将重点介绍目前有关脑健康和脑疾病中 eRNA 生物学研究的文献的广度,并讨论未来深入研究脑健康和脑疾病中 eRNA 所面临的挑战以及重点领域和策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信