Optimal Risk Sharing for Maxmin Choquet Expected Utility Model

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
De-jian Tian, Shang-ri Wu
{"title":"Optimal Risk Sharing for Maxmin Choquet Expected Utility Model","authors":"De-jian Tian,&nbsp;Shang-ri Wu","doi":"10.1007/s10255-024-1045-3","DOIUrl":null,"url":null,"abstract":"<div><p>This article analyzes the Pareto optimal allocations, agreeable trades and agreeable bets under the maxmin Choquet expected utility (MCEU) model. We provide several useful characterizations for Pareto optimal allocations for risk averse agents. We derive the formulation descriptions for non-existence agreeable trades or agreeable bets for risk neutral agents. We build some relationships between ex-ante stage and interim stage on agreeable trades or bets when new information arrives.</p></div>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":"40 2","pages":"430 - 444"},"PeriodicalIF":0.9000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematicae Applicatae Sinica, English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-024-1045-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This article analyzes the Pareto optimal allocations, agreeable trades and agreeable bets under the maxmin Choquet expected utility (MCEU) model. We provide several useful characterizations for Pareto optimal allocations for risk averse agents. We derive the formulation descriptions for non-existence agreeable trades or agreeable bets for risk neutral agents. We build some relationships between ex-ante stage and interim stage on agreeable trades or bets when new information arrives.

Maxmin Choquet 预期效用模型的最优风险分担
本文分析了最大乔奎特预期效用(MCEU)模型下的帕累托最优分配、合意交易和合意投注。我们为风险厌恶代理的帕累托最优分配提供了几个有用的特征。我们推导出了风险中性代理的不存在合意交易或合意投注的表述描述。当新信息出现时,我们在合意交易或合意投注的事前阶段和中期阶段之间建立了一些关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
70
审稿时长
3.0 months
期刊介绍: Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信