Rainbow Pancyclicity in a Collection of Graphs Under the Dirac-type Condition

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
Lu-yi Li, Ping Li, Xue-liang Li
{"title":"Rainbow Pancyclicity in a Collection of Graphs Under the Dirac-type Condition","authors":"Lu-yi Li,&nbsp;Ping Li,&nbsp;Xue-liang Li","doi":"10.1007/s10255-024-1076-9","DOIUrl":null,"url":null,"abstract":"<div><p>Let <b>G</b> = {<i>G</i><sub><i>i</i></sub>: <i>i</i> ∈ [<i>n</i>]} be a collection of not necessarily distinct <i>n</i>-vertex graphs with the same vertex set <i>V</i>, where <b>G</b> can be seen as an edge-colored (multi)graph and each <i>G</i><sub><i>i</i></sub> is the set of edges with color <i>i</i>. A graph <i>F</i> on <i>V</i> is called <i>rainbow</i> if any two edges of <i>F</i> come from different <i>G</i><sub><i>i</i></sub>s’. We say that <b>G</b> is <i>rainbow pancyclic</i> if there is a rainbow cycle <i>C</i><sub>ℓ</sub> of length <i>ℓ</i> in <b>G</b> for each integer <i>ℓ</i> ∈ [3, <i>n</i>]. In 2020, Joos and Kim proved a rainbow version of Dirac’s theorem: If <span>\\(\\delta ({G_i}) \\ge {n \\over 2}\\)</span> for each <i>i</i> ∈ [<i>n</i>], then there is a rainbow Hamiltonian cycle in <b>G</b>. In this paper, under the same condition, we show that <b>G</b> is rainbow pancyclic except that <i>n</i> is even and <b>G</b> consists of <i>n</i> copies of <span>\\({K_{{n \\over 2},{n \\over 2}}}\\)</span>. This result supports the famous meta-conjecture posed by Bondy.</p></div>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":"40 2","pages":"269 - 274"},"PeriodicalIF":0.9000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematicae Applicatae Sinica, English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-024-1076-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Let G = {Gi: i ∈ [n]} be a collection of not necessarily distinct n-vertex graphs with the same vertex set V, where G can be seen as an edge-colored (multi)graph and each Gi is the set of edges with color i. A graph F on V is called rainbow if any two edges of F come from different Gis’. We say that G is rainbow pancyclic if there is a rainbow cycle C of length in G for each integer ∈ [3, n]. In 2020, Joos and Kim proved a rainbow version of Dirac’s theorem: If \(\delta ({G_i}) \ge {n \over 2}\) for each i ∈ [n], then there is a rainbow Hamiltonian cycle in G. In this paper, under the same condition, we show that G is rainbow pancyclic except that n is even and G consists of n copies of \({K_{{n \over 2},{n \over 2}}}\). This result supports the famous meta-conjecture posed by Bondy.

狄拉克型条件下图形集合的彩虹泛函性
让 G = {Gi: i∈ [n]} 是具有相同顶点集 V 的不一定不同的 n 顶点图的集合,其中 G 可以看作是边着色(多)图,每个 Gi 是具有颜色 i 的边的集合。如果 F 的任意两条边来自不同的 Gis',则 V 上的图 F 称为彩虹图。对于每个整数 ℓ∈ [3, n],如果 G 中存在长度为 ℓ 的彩虹循环 Cℓ,我们就说 G 是彩虹泛循环图。2020 年,Joos 和 Kim 证明了狄拉克定理的彩虹版本:在本文中,在同样的条件下,我们证明了 G 是彩虹泛周期的,除了 n 是偶数,并且 G 由 n 份 \({K_{n \over 2},{n \over 2}}\) 组成。这一结果支持邦迪提出的著名元猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
70
审稿时长
3.0 months
期刊介绍: Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信