{"title":"Burning Numbers of Barbells","authors":"Hui-qing Liu, Rui-ting Zhang, Xiao-lan Hu","doi":"10.1007/s10255-024-1113-8","DOIUrl":null,"url":null,"abstract":"<div><p>Motivated by a discrete-time process intended to measure the speed of the spread of contagion in a graph, the burning number <i>b</i>(<i>G</i>) of a graph <i>G</i>, is defined as the smallest integer <i>k</i> for which there are vertices <i>x</i><sub>1</sub>,…,<i>x</i><sub><i>k</i></sub> such that for every vertex <i>u</i> of <i>G</i>, there exists <i>i</i> ∈ {1,…,<i>k</i>} with <i>d</i><sub><i>G</i></sub>(<i>u, x</i><sub><i>i</i></sub>) ≤ <i>k</i> − <i>i</i>, and <i>d</i><sub><i>G</i></sub>(<i>x</i><sub><i>i</i></sub>, <i>x</i><sub><i>j</i></sub>) ≥ <i>j</i> − <i>i</i> for any 1 ≤ <i>i</i> < <i>j</i> ≤ <i>k</i>. The graph burning problem has been shown to be NP-complete even for some acyclic graphs with maximum degree three. In this paper, we determine the burning numbers of all short barbells and long barbells, respectively.</p></div>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":"40 2","pages":"526 - 538"},"PeriodicalIF":0.9000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematicae Applicatae Sinica, English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-024-1113-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Motivated by a discrete-time process intended to measure the speed of the spread of contagion in a graph, the burning number b(G) of a graph G, is defined as the smallest integer k for which there are vertices x1,…,xk such that for every vertex u of G, there exists i ∈ {1,…,k} with dG(u, xi) ≤ k − i, and dG(xi, xj) ≥ j − i for any 1 ≤ i < j ≤ k. The graph burning problem has been shown to be NP-complete even for some acyclic graphs with maximum degree three. In this paper, we determine the burning numbers of all short barbells and long barbells, respectively.
期刊介绍:
Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.