Ambarzumyan’s Theorem for the Dirac Operator on Equilateral Tree Graphs

Pub Date : 2024-03-27 DOI:10.1007/s10255-024-1042-6
Dong-Jie Wu, Xin-Jian Xu, Chuan-Fu Yang
{"title":"Ambarzumyan’s Theorem for the Dirac Operator on Equilateral Tree Graphs","authors":"Dong-Jie Wu,&nbsp;Xin-Jian Xu,&nbsp;Chuan-Fu Yang","doi":"10.1007/s10255-024-1042-6","DOIUrl":null,"url":null,"abstract":"<div><p>The classical Ambarzumyan’s theorem states that if the Neumann eigenvalues of the Sturm-Liouville operator <span>\\( - {{{d^2}} \\over {d{x^2}}} + q\\)</span> with an integrable real-valued potential <i>q</i> on [0, π] are {<i>n</i><sup>2</sup>: <i>n</i> ≥ 0}, then <i>q</i> = 0 for almost all <i>x</i> ∈ [0, <i>π</i>]. In this work, the classical Ambarzumyan’s theorem is extended to the Dirac operator on equilateral tree graphs. We prove that if the spectrum of the Dirac operator on graphs coincides with the unperturbed case, then the potential is identically zero.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-024-1042-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The classical Ambarzumyan’s theorem states that if the Neumann eigenvalues of the Sturm-Liouville operator \( - {{{d^2}} \over {d{x^2}}} + q\) with an integrable real-valued potential q on [0, π] are {n2: n ≥ 0}, then q = 0 for almost all x ∈ [0, π]. In this work, the classical Ambarzumyan’s theorem is extended to the Dirac operator on equilateral tree graphs. We prove that if the spectrum of the Dirac operator on graphs coincides with the unperturbed case, then the potential is identically zero.

分享
查看原文
等边树图上狄拉克算子的安巴尔祖米扬定理
经典的 Ambarzumyan 定理指出,如果在 [0, π] 上具有可积分实值势 q 的 Sturm-Liouville 算子 \( - {{{d^2}} \over {d{x^2}}} + q\) 的 Neumann 特征值为 {n2: n ≥ 0},则几乎所有 x∈ [0, π] 的 q = 0。在这项工作中,经典的 Ambarzumyan 定理被扩展到等边树状图上的狄拉克算子。我们证明,如果图上狄拉克算子的谱与未扰动情况重合,那么势就同等于零。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信