A Global Optimality Principle for Fully Coupled Mean-field Control Systems

IF 0.9 4区 数学 Q3 MATHEMATICS, APPLIED
Tao Hao
{"title":"A Global Optimality Principle for Fully Coupled Mean-field Control Systems","authors":"Tao Hao","doi":"10.1007/s10255-024-1112-9","DOIUrl":null,"url":null,"abstract":"<div><p>This paper concerns a global optimality principle for fully coupled mean-field control systems. Both the first-order and the second-order variational equations are fully coupled mean-field linear FBSDEs. A new <i>linear relation</i> is introduced, with which we successfully decouple the fully coupled first-order variational equations. We give a new second-order expansion of <i>Y</i><sup><i>ε</i></sup> that can work well in mean-field framework. Based on this result, the stochastic maximum principle is proved. The comparison with the stochastic maximum principle for controlled mean-field stochastic differential equations is supplied.</p></div>","PeriodicalId":6951,"journal":{"name":"Acta Mathematicae Applicatae Sinica, English Series","volume":"40 2","pages":"379 - 413"},"PeriodicalIF":0.9000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematicae Applicatae Sinica, English Series","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-024-1112-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper concerns a global optimality principle for fully coupled mean-field control systems. Both the first-order and the second-order variational equations are fully coupled mean-field linear FBSDEs. A new linear relation is introduced, with which we successfully decouple the fully coupled first-order variational equations. We give a new second-order expansion of Yε that can work well in mean-field framework. Based on this result, the stochastic maximum principle is proved. The comparison with the stochastic maximum principle for controlled mean-field stochastic differential equations is supplied.

全耦合平均场控制系统的全局最优性原理
本文涉及全耦合均场控制系统的全局最优性原理。一阶和二阶变分方程都是全耦合均值场线性 FBSDE。通过引入一种新的线性关系,我们成功地解耦了全耦合一阶变分方程。我们给出了 Yε 的新二阶展开式,它可以在均值场框架中很好地工作。基于这一结果,我们证明了随机最大原则。提供了与受控均场随机微分方程随机最大原理的比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
70
审稿时长
3.0 months
期刊介绍: Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信