where a > 0, b ≥ 0, ρ > 0 are constants, \({p^ * } = {{Np} \over {N - p}}\) is the critical Sobolev exponent, μ is a Lagrange multiplier, \( - {\Delta _p}u = - {\rm{div}}(|\nabla u{|^{p - 2}}\nabla u)\), \(2 < p < N < 2p,\,\,\,\mu \in \mathbb{R}\) and \(s \in (2{{N + 2} \over N}p - 2,\,\,\,{p^ * })\). We demonstrate that the p-Kirchhoff equation has a normalized solution using the mountain pass lemma and some analysis techniques.
期刊介绍:
Acta Mathematicae Applicatae Sinica (English Series) is a quarterly journal established by the Chinese Mathematical Society. The journal publishes high quality research papers from all branches of applied mathematics, and particularly welcomes those from partial differential equations, computational mathematics, applied probability, mathematical finance, statistics, dynamical systems, optimization and management science.