求助PDF
{"title":"Normalized Solution for p-Kirchhoff Equation with a L2-supercritical Growth","authors":"Zhi-min Ren, Yong-yi Lan","doi":"10.1007/s10255-024-1120-9","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we investigate the following <i>p</i>-Kirchhoff equation </p><div><div><span>$$\\left\\{ {\\matrix{{(a + b\\,\\int_{{\\mathbb{R}^N}} {(|\\nabla u{|^p} + |u{|^p})dx)\\,( - {\\Delta _p}u + |u{|^{p - 2}}u) = |u{|^{s - 2}}u + \\mu u,\\,\\,x \\in {\\mathbb{R}^N},} } \\hfill \\cr {\\int_{{\\mathbb{R}^N}} {|u{|^2}dx = \\rho ,} } \\hfill \\cr } } \\right.$$</span></div></div><p> where <i>a</i> > 0, <i>b</i> ≥ 0, <i>ρ</i> > 0 are constants, <span>\\({p^ * } = {{Np} \\over {N - p}}\\)</span> is the critical Sobolev exponent, <i>μ</i> is a Lagrange multiplier, <span>\\( - {\\Delta _p}u = - {\\rm{div}}(|\\nabla u{|^{p - 2}}\\nabla u)\\)</span>, <span>\\(2 < p < N < 2p,\\,\\,\\,\\mu \\in \\mathbb{R}\\)</span> and <span>\\(s \\in (2{{N + 2} \\over N}p - 2,\\,\\,\\,{p^ * })\\)</span>. We demonstrate that the <i>p</i>-Kirchhoff equation has a normalized solution using the mountain pass lemma and some analysis techniques.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-024-1120-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
引用
批量引用
Abstract
In this paper, we investigate the following p -Kirchhoff equation
$$\left\{ {\matrix{{(a + b\,\int_{{\mathbb{R}^N}} {(|\nabla u{|^p} + |u{|^p})dx)\,( - {\Delta _p}u + |u{|^{p - 2}}u) = |u{|^{s - 2}}u + \mu u,\,\,x \in {\mathbb{R}^N},} } \hfill \cr {\int_{{\mathbb{R}^N}} {|u{|^2}dx = \rho ,} } \hfill \cr } } \right.$$
where a > 0, b ≥ 0, ρ > 0 are constants, \({p^ * } = {{Np} \over {N - p}}\) is the critical Sobolev exponent, μ is a Lagrange multiplier, \( - {\Delta _p}u = - {\rm{div}}(|\nabla u{|^{p - 2}}\nabla u)\) , \(2 < p < N < 2p,\,\,\,\mu \in \mathbb{R}\) and \(s \in (2{{N + 2} \over N}p - 2,\,\,\,{p^ * })\) . We demonstrate that the p -Kirchhoff equation has a normalized solution using the mountain pass lemma and some analysis techniques.
具有 L2 超临界增长的 p-Kirchhoff 方程的归一化解法
在本文中,我们研究了以下 p-Kirchhoff 方程 $$\left\{ {\matrix{{(a + b\,\int_{\mathbb{R}^N}}{(|\nabla u{|^p} + |u{|^p})dx)\,( - {\Delta _p}u + |u{|^{p - 2}}u) = |u{|^{s - 2}}u + \mu u,\,x \ in {\mathbb{R}^N},}}h\fill \cr {\int_{\mathbb{R}^N}}{|u{|^2}dx = \rho ,}}h\fill \cr }}\right.$$ 其中 a > 0, b ≥ 0, ρ > 0 是常数, \({p^ * } = {{Np} \over {N - p}}\) 是临界索波列夫指数, μ 是拉格朗日乘数, \( - {\Delta _p}u = - {\rm{div}}(|\nabla u{|^{p - 2}}\nabla u)\), \(2 <;p < N < 2p,\,\,\mu \in \mathbb{R}\) and\(s \in (2{{N + 2} \over N}p - 2,\,\,\,{p^ * })\).我们利用山口阶梯和一些分析技术证明 p-Kirchhoff 方程有一个归一化解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。