High-order Soliton Matrix for the Third-order Flow Equation of the Gerdjikov-Ivanov Hierarchy Through the Riemann-Hilbert Method

Pub Date : 2024-03-27 DOI:10.1007/s10255-024-1109-4
Jin-yan Zhu, Yong Chen
{"title":"High-order Soliton Matrix for the Third-order Flow Equation of the Gerdjikov-Ivanov Hierarchy Through the Riemann-Hilbert Method","authors":"Jin-yan Zhu,&nbsp;Yong Chen","doi":"10.1007/s10255-024-1109-4","DOIUrl":null,"url":null,"abstract":"<div><p>The Gerdjikov-Ivanov (GI) hierarchy is derived via recursion operator, in this article, we mainly investigate the third-order flow GI equation. In the framework of the Riemann-Hilbert method, the soliton matrices of the third-order flow GI equation with simple zeros and elementary high-order zeros of Riemann-Hilbert problem are constructed through the standard dressing process. Taking advantage of this result, some properties and asymptotic analysis of single soliton solution and two soliton solution are discussed, and the simple elastic interaction of two soliton are proved. Compared with soliton solution of the classical second-order flow, we find that the higher-order dispersion term affects the propagation velocity, propagation direction and amplitude of the soliton. Finally, by means of a certain limit technique, the high-order soliton solution matrix for the third-order flow GI equation is derived.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10255-024-1109-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Gerdjikov-Ivanov (GI) hierarchy is derived via recursion operator, in this article, we mainly investigate the third-order flow GI equation. In the framework of the Riemann-Hilbert method, the soliton matrices of the third-order flow GI equation with simple zeros and elementary high-order zeros of Riemann-Hilbert problem are constructed through the standard dressing process. Taking advantage of this result, some properties and asymptotic analysis of single soliton solution and two soliton solution are discussed, and the simple elastic interaction of two soliton are proved. Compared with soliton solution of the classical second-order flow, we find that the higher-order dispersion term affects the propagation velocity, propagation direction and amplitude of the soliton. Finally, by means of a certain limit technique, the high-order soliton solution matrix for the third-order flow GI equation is derived.

分享
查看原文
通过黎曼-希尔伯特方法计算格尔吉科夫-伊万诺夫层次三阶流动方程的高阶孤子矩阵
摘要 Gerdjikov-Ivanov(GI)层次结构是通过递归算子推导出来的,本文主要研究三阶流 GI 方程。在黎曼-希尔伯特方法的框架下,通过标准的修整过程,构造了三阶流 GI 方程的具有黎曼-希尔伯特问题简单零点和基本高阶零点的孤子矩阵。利用这一结果,讨论了单孤子解和双孤子解的一些性质和渐近分析,并证明了双孤子的简单弹性相互作用。与经典二阶流的孤子解相比,我们发现高阶分散项会影响孤子的传播速度、传播方向和振幅。最后,通过一定的极限技术,得出了三阶流 GI 方程的高阶孤子解矩阵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信