{"title":"Cellulose acetate filter rods tuned by surface engineering modification for typical smoke components adsorption","authors":"Zhi Huang, Hua Liu, Wenjie Zhou, Mengdie Cai, Kangzhong Shi, Ying Zhao, Lisheng Guo","doi":"10.1515/epoly-2023-0054","DOIUrl":null,"url":null,"abstract":"A series of filter rods (FRs) with sodium alginate (SA) modification were prepared by a simple one-pot pre-treatment surface modification method for the retention of typical smoke components. The influences of SA on the physico-chemical properties and adsorption behaviors (or retention characteristics) toward FRs were investigated in detail. Based on the results of XRD, BET, and SEM, it can be inferred that SA modification has no influences on compositions and textural properties of FRs. However, surface modification of FR by SA can greatly improve the hydrophilicity of FR, which is crucial for water retention. <jats:italic>In situ</jats:italic> diffuse Fourier-transform infrared spectroscopy results demonstrate that FR modified by 2 g·L<jats:sup>−1</jats:sup> SA presents superior adsorption character for acetone. The differences in the adsorption or retention of water and acetone are ascribed to surface enriched functional groups tuned by surface engineering modification. By contrast, the modification of SA had no obvious effect on the adsorption of CO at room temperature. By contrast, at high temperature, low modification concentration is conducive to the CO<jats:sub>2</jats:sub> and CO adsorption. It presents a good perspective for the rational design of new filter materials to reduce the release of harmful components in cigarette smoke.","PeriodicalId":11806,"journal":{"name":"e-Polymers","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"e-Polymers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/epoly-2023-0054","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
A series of filter rods (FRs) with sodium alginate (SA) modification were prepared by a simple one-pot pre-treatment surface modification method for the retention of typical smoke components. The influences of SA on the physico-chemical properties and adsorption behaviors (or retention characteristics) toward FRs were investigated in detail. Based on the results of XRD, BET, and SEM, it can be inferred that SA modification has no influences on compositions and textural properties of FRs. However, surface modification of FR by SA can greatly improve the hydrophilicity of FR, which is crucial for water retention. In situ diffuse Fourier-transform infrared spectroscopy results demonstrate that FR modified by 2 g·L−1 SA presents superior adsorption character for acetone. The differences in the adsorption or retention of water and acetone are ascribed to surface enriched functional groups tuned by surface engineering modification. By contrast, the modification of SA had no obvious effect on the adsorption of CO at room temperature. By contrast, at high temperature, low modification concentration is conducive to the CO2 and CO adsorption. It presents a good perspective for the rational design of new filter materials to reduce the release of harmful components in cigarette smoke.
通过简单的一锅预处理表面改性方法制备了一系列具有海藻酸钠(SA)改性的滤棒(FRs),用于截留典型的烟雾成分。详细研究了海藻酸钠对滤棒物理化学性质和吸附行为(或截留特性)的影响。根据 XRD、BET 和 SEM 的结果,可以推断出 SA 改性对 FR 的成分和纹理特性没有影响。然而,用 SA 对玻璃纤维进行表面改性可以大大提高玻璃纤维的亲水性,而亲水性对保水至关重要。原位扩散傅立叶变换红外光谱分析结果表明,经 2 g-L-1 SA 改性的玻璃纤维对丙酮具有优异的吸附特性。水和丙酮在吸附或保留方面的差异可归因于表面工程改性所调整的表面富官能团。相比之下,SA 的改性在室温下对 CO 的吸附没有明显影响。相反,在高温条件下,低改性浓度有利于 CO2 和 CO 的吸附。这为合理设计新型过滤材料以减少香烟烟雾中有害成分的释放提供了一个良好的视角。
期刊介绍:
e-Polymers is a strictly peer-reviewed scientific journal. The aim of e-Polymers is to publish pure and applied polymer-science-related original research articles, reviews, and feature articles. It includes synthetic methodologies, characterization, and processing techniques for polymer materials. Reports on interdisciplinary polymer science and on applications of polymers in all areas are welcome.
The present Editors-in-Chief would like to thank the authors, the reviewers, the editorial staff, the advisory board, and the supporting organization that made e-Polymers a successful and sustainable scientific journal of the polymer community. The Editors of e-Polymers feel very much engaged to provide best publishing services at the highest possible level.