Are the Italian microzonation level 2 abacuses applicable in the Friuli Venezia Giulia (Italy) plain? Comparison between the national abacuses and the numerically simulated amplification factors and between the derived elastic response spectra

IF 1.6 4区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS
Veronica Pazzi, Chantal Beltrame, Perla Taverna, Gabriele Peressi, Giovanni Costa
{"title":"Are the Italian microzonation level 2 abacuses applicable in the Friuli Venezia Giulia (Italy) plain? Comparison between the national abacuses and the numerically simulated amplification factors and between the derived elastic response spectra","authors":"Veronica Pazzi,&nbsp;Chantal Beltrame,&nbsp;Perla Taverna,&nbsp;Gabriele Peressi,&nbsp;Giovanni Costa","doi":"10.1007/s10950-024-10212-9","DOIUrl":null,"url":null,"abstract":"<div><p>Seismic shaking of an area is strongly affected by the local geology. The so-called local site effects must be considered for the estimation of seismic effects on structures and urban planning. Thus, the seismic microzonation is the process aimed at identifying and mapping the subsoil local response in a given area, usually at urban/municipality scale and in terms of ground shaking parameters and susceptibility to ground instabilities. In Italy, for areas that can be schematised as a 1D subsoil model (e.g. alluvial plain), a simplified approach is proposed to quantify the seismic amplification (amplification factor, AF). This approach consists of tables of correspondences, called seismic abacuses, available for the whole national area as well as for some regional territories, and derived for simplified subsoil models. In this work, the results of the comparison between the AF values retrieved from national abacuses applied in the Friuli Venezia Giulia (Italy) plain municipalities and those from 1D numerical simulations are presented. In general, the abacuses underestimate the local seismic site effects a part for sites with a shallow bedrock. No correlations/trends were identified between the AF derived from abacuses and those from numerical simulations. Moreover, considering the elastic acceleration response spectra, it emerges that in the 49.5% of the FVG analysed sites the abacuses approach, even though it underestimates the real seismic response, is a more suitable approximation compared to the soil class simplified approach proposed by the Italian regulation. Finally, what emerges is that the limit of 30 m, as indicated in the Italian regulation, to consider a deep or shallow bedrock seams underestimated, and the AFs are not correlated with the seismic bedrock depth when it is higher than 100 m.</p></div>","PeriodicalId":16994,"journal":{"name":"Journal of Seismology","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10950-024-10212-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Seismology","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s10950-024-10212-9","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Seismic shaking of an area is strongly affected by the local geology. The so-called local site effects must be considered for the estimation of seismic effects on structures and urban planning. Thus, the seismic microzonation is the process aimed at identifying and mapping the subsoil local response in a given area, usually at urban/municipality scale and in terms of ground shaking parameters and susceptibility to ground instabilities. In Italy, for areas that can be schematised as a 1D subsoil model (e.g. alluvial plain), a simplified approach is proposed to quantify the seismic amplification (amplification factor, AF). This approach consists of tables of correspondences, called seismic abacuses, available for the whole national area as well as for some regional territories, and derived for simplified subsoil models. In this work, the results of the comparison between the AF values retrieved from national abacuses applied in the Friuli Venezia Giulia (Italy) plain municipalities and those from 1D numerical simulations are presented. In general, the abacuses underestimate the local seismic site effects a part for sites with a shallow bedrock. No correlations/trends were identified between the AF derived from abacuses and those from numerical simulations. Moreover, considering the elastic acceleration response spectra, it emerges that in the 49.5% of the FVG analysed sites the abacuses approach, even though it underestimates the real seismic response, is a more suitable approximation compared to the soil class simplified approach proposed by the Italian regulation. Finally, what emerges is that the limit of 30 m, as indicated in the Italian regulation, to consider a deep or shallow bedrock seams underestimated, and the AFs are not correlated with the seismic bedrock depth when it is higher than 100 m.

Abstract Image

意大利微区划二级指数是否适用于弗留利-威尼斯-朱利亚(意大利)平原?国家指数与数值模拟放大系数之间的比较以及得出的弹性响应谱之间的比较
一个地区的地震震动受当地地质的影响很大。在估算地震对结构和城市规划的影响时,必须考虑所谓的局部场地效应。因此,地震微区划分的目的是确定和绘制特定地区的底土局部响应,通常是在城市/市镇范围内,并根据地震动参数和对地面不稳定性的敏感性进行划分。在意大利,对于可绘制一维底土模型的地区(如冲积平原),建议采用简化方法来量化地震放大(放大系数,AF)。这种方法由对应表组成,称为地震算盘,可用于整个国家地区和一些区域领土,并根据简化的底土模型得出。在这项工作中,介绍了从应用于弗留利-威尼斯-朱利亚(意大利)平原城市的国家算例中获取的 AF 值与一维数值模拟的 AF 值之间的比较结果。总体而言,对于基岩较浅的地点,算式低估了部分当地地震场地效应。从算符得出的 AF 与数值模拟得出的 AF 之间没有发现相关性/趋势。此外,考虑到弹性加速度反应谱,在 49.5% 的 FVG 分析场地中,虽然算数方法低估了实际地震反应,但与意大利法规提出的土壤等级简化方法相比,算数方法是更合适的近似方法。最后,意大利法规中规定的 30 米为基岩深层或浅层的界限被低估了,当基岩深度大于 100 米时,自动换算系数与地震基岩深度不相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Seismology
Journal of Seismology 地学-地球化学与地球物理
CiteScore
3.30
自引率
6.20%
发文量
67
审稿时长
3 months
期刊介绍: Journal of Seismology is an international journal specialising in all observational and theoretical aspects related to earthquake occurrence. Research topics may cover: seismotectonics, seismicity, historical seismicity, seismic source physics, strong ground motion studies, seismic hazard or risk, engineering seismology, physics of fault systems, triggered and induced seismicity, mining seismology, volcano seismology, earthquake prediction, structural investigations ranging from local to regional and global studies with a particular focus on passive experiments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信