Ziyuan Hao, Jingyi Liu, Yao Teng, Xinchang Wang, Peiyao Jiang, Weijie Si, Hongying Li, Fuqiang Yang, Pingping Guo, Jiawen Yang
{"title":"Identification and functional analysis of a CbSHR homolog in controlling adventitious root development in Catalpa bungei","authors":"Ziyuan Hao, Jingyi Liu, Yao Teng, Xinchang Wang, Peiyao Jiang, Weijie Si, Hongying Li, Fuqiang Yang, Pingping Guo, Jiawen Yang","doi":"10.1007/s11240-024-02730-8","DOIUrl":null,"url":null,"abstract":"<p>Clonal forestry is an important approach for intensive management as it involves vegetative propagation, which does not entail gene separation and recombination, thereby retaining the excellent traits of the parent trees. Exploring essential genes involved in rooting of cuttings seems urgent in <i>Catalpa bungei</i> as it is the capital method in vegetative propagation. In this study, we identified a homolog of the SHR gene involved in the development of adventitious roots (ARs) in <i>C. bungei</i> through multiple alignment, homologous cloning, qPCR detection, and transgenic techniques. The CbSHR gene encodes a protein of 445 amino acids, and the expression of the CbSHR gene reaches its peak at the callus differentiation stage (S4, about 30 days after cutting) during AR development. By overexpressing the CbSHR gene in tobacco, the number of roots and their length were increased compared with the wild-type line, thus identifying a pivotal homolog, the CbSHR gene in <i>C. bungei</i>, which promotes the initiation and elongation of ARs. This result provided a candidate gene for genetic improvement of cutting, and will also contribute to understanding the molecular mechanisms of AR development in <i>C. bungei</i>.</p>","PeriodicalId":20219,"journal":{"name":"Plant Cell, Tissue and Organ Culture","volume":"2 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Cell, Tissue and Organ Culture","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s11240-024-02730-8","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Clonal forestry is an important approach for intensive management as it involves vegetative propagation, which does not entail gene separation and recombination, thereby retaining the excellent traits of the parent trees. Exploring essential genes involved in rooting of cuttings seems urgent in Catalpa bungei as it is the capital method in vegetative propagation. In this study, we identified a homolog of the SHR gene involved in the development of adventitious roots (ARs) in C. bungei through multiple alignment, homologous cloning, qPCR detection, and transgenic techniques. The CbSHR gene encodes a protein of 445 amino acids, and the expression of the CbSHR gene reaches its peak at the callus differentiation stage (S4, about 30 days after cutting) during AR development. By overexpressing the CbSHR gene in tobacco, the number of roots and their length were increased compared with the wild-type line, thus identifying a pivotal homolog, the CbSHR gene in C. bungei, which promotes the initiation and elongation of ARs. This result provided a candidate gene for genetic improvement of cutting, and will also contribute to understanding the molecular mechanisms of AR development in C. bungei.
克隆林业是集约化管理的重要方法,因为它涉及无性繁殖,不需要基因分离和重组,从而保留了亲本树木的优良性状。扦插是无性繁殖的主要方法,因此探索扦插生根过程中的重要基因显得尤为迫切。在本研究中,我们通过多重比对、同源克隆、qPCR 检测和转基因技术,确定了参与梓树不定根(ARs)发育的 SHR 基因的同源物。CbSHR基因编码一种445个氨基酸的蛋白质,在AR发育过程中,CbSHR基因的表达量在胼胝体分化阶段(S4,切后约30天)达到峰值。通过在烟草中过表达 CbSHR 基因,与野生型品系相比,根的数量和长度都有所增加,从而确定了 C. bungei 中的一个关键同源基因 CbSHR,它能促进 AR 的萌发和伸长。这一结果为切花的遗传改良提供了一个候选基因,同时也有助于了解 C. bungei AR 发育的分子机制。
期刊介绍:
This journal highlights the myriad breakthrough technologies and discoveries in plant biology and biotechnology. Plant Cell, Tissue and Organ Culture (PCTOC: Journal of Plant Biotechnology) details high-throughput analysis of gene function and expression, gene silencing and overexpression analyses, RNAi, siRNA, and miRNA studies, and much more. It examines the transcriptional and/or translational events involved in gene regulation as well as those molecular controls involved in morphogenesis of plant cells and tissues.
The journal also covers practical and applied plant biotechnology, including regeneration, organogenesis and somatic embryogenesis, gene transfer, gene flow, secondary metabolites, metabolic engineering, and impact of transgene(s) dissemination into managed and unmanaged plant systems.