Local Automorphisms and Local Superderivations of Model Filiform Lie Superalgebras

IF 1.3 4区 数学 Q1 MATHEMATICS
Yuqiu Sheng, Wende Liu, Yang Liu
{"title":"Local Automorphisms and Local Superderivations of Model Filiform Lie Superalgebras","authors":"Yuqiu Sheng, Wende Liu, Yang Liu","doi":"10.1155/2024/6650997","DOIUrl":null,"url":null,"abstract":"In this paper, we give the forms of local automorphisms (resp. superderivations) of model filiform Lie superalgebra <svg height=\"12.9866pt\" style=\"vertical-align:-4.3507pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 23.1172 12.9866\" width=\"23.1172pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,8.294,3.132)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,12.953,3.132)\"></path></g><g transform=\"matrix(.0091,0,0,-0.0091,15.11,3.132)\"></path></g></svg> in the matrix version. Linear 2-local automorphisms (resp. superderivations) of <svg height=\"12.9866pt\" style=\"vertical-align:-4.3507pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 23.1172 12.9866\" width=\"23.1172pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-77\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,8.294,3.132)\"><use xlink:href=\"#g50-111\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,12.953,3.132)\"><use xlink:href=\"#g50-45\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,15.11,3.132)\"><use xlink:href=\"#g50-110\"></use></g></svg> are also characterized. We prove that each linear 2-local automorphism of <svg height=\"12.9866pt\" style=\"vertical-align:-4.3507pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.6359 23.1172 12.9866\" width=\"23.1172pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-77\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,8.294,3.132)\"><use xlink:href=\"#g50-111\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,12.953,3.132)\"><use xlink:href=\"#g50-45\"></use></g><g transform=\"matrix(.0091,0,0,-0.0091,15.11,3.132)\"><use xlink:href=\"#g50-110\"></use></g></svg> is an automorphism.","PeriodicalId":54214,"journal":{"name":"Journal of Mathematics","volume":"9 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1155/2024/6650997","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we give the forms of local automorphisms (resp. superderivations) of model filiform Lie superalgebra in the matrix version. Linear 2-local automorphisms (resp. superderivations) of are also characterized. We prove that each linear 2-local automorphism of is an automorphism.
模型丝状列超拉的局部自动和局部超分化
在本文中,我们给出了矩阵版本的模型丝状 Lie 超代数的局部自动形(或超衍)的形式。我们还给出了的线性 2 局部自动形(或超衍)的特征。我们证明了每个线性 2 局部自动形都是一个自动形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Mathematics
Journal of Mathematics Mathematics-General Mathematics
CiteScore
2.50
自引率
14.30%
发文量
0
期刊介绍: Journal of Mathematics is a broad scope journal that publishes original research articles as well as review articles on all aspects of both pure and applied mathematics. As well as original research, Journal of Mathematics also publishes focused review articles that assess the state of the art, and identify upcoming challenges and promising solutions for the community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信