The online metacognitive control of decisions

Juliette Bénon, Douglas Lee, William Hopper, Morgan Verdeil, Mathias Pessiglione, Fabien Vinckier, Sebastien Bouret, Marion Rouault, Raphael Lebouc, Giovanni Pezzulo, Christiane Schreiweis, Eric Burguière, Jean Daunizeau
{"title":"The online metacognitive control of decisions","authors":"Juliette Bénon, Douglas Lee, William Hopper, Morgan Verdeil, Mathias Pessiglione, Fabien Vinckier, Sebastien Bouret, Marion Rouault, Raphael Lebouc, Giovanni Pezzulo, Christiane Schreiweis, Eric Burguière, Jean Daunizeau","doi":"10.1038/s44271-024-00071-y","DOIUrl":null,"url":null,"abstract":"Difficult decisions typically involve mental effort, which scales with the deployment of cognitive (e.g., mnesic, attentional) resources engaged in processing decision-relevant information. But how does the brain regulate mental effort? A possibility is that the brain optimizes a resource allocation problem, whereby the amount of invested resources balances its expected cost (i.e. effort) and benefit. Our working assumption is that subjective decision confidence serves as the benefit term of the resource allocation problem, hence the “metacognitive” nature of decision control. Here, we present a computational model for the online metacognitive control of decisions or oMCD. Formally, oMCD is a Markov Decision Process that optimally solves the ensuing resource allocation problem under agnostic assumptions about the inner workings of the underlying decision system. We demonstrate how this makes oMCD a quasi-optimal control policy for a broad class of decision processes, including -but not limited to- progressive attribute integration. We disclose oMCD’s main properties (in terms of choice, confidence and response time), and show that they reproduce most established empirical results in the field of value-based decision making. Finally, we discuss the possible connections between oMCD and most prominent neurocognitive theories about decision control and mental effort regulation. How should the mind allocate resources to make good decisions? In the online metacognitive control of decisions model, subjective decision confidence is used as the benefit term of the resource allocation problem to optimize the processing of decision-relevant information.","PeriodicalId":501698,"journal":{"name":"Communications Psychology","volume":" ","pages":"1-17"},"PeriodicalIF":0.0000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44271-024-00071-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Psychology","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44271-024-00071-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Difficult decisions typically involve mental effort, which scales with the deployment of cognitive (e.g., mnesic, attentional) resources engaged in processing decision-relevant information. But how does the brain regulate mental effort? A possibility is that the brain optimizes a resource allocation problem, whereby the amount of invested resources balances its expected cost (i.e. effort) and benefit. Our working assumption is that subjective decision confidence serves as the benefit term of the resource allocation problem, hence the “metacognitive” nature of decision control. Here, we present a computational model for the online metacognitive control of decisions or oMCD. Formally, oMCD is a Markov Decision Process that optimally solves the ensuing resource allocation problem under agnostic assumptions about the inner workings of the underlying decision system. We demonstrate how this makes oMCD a quasi-optimal control policy for a broad class of decision processes, including -but not limited to- progressive attribute integration. We disclose oMCD’s main properties (in terms of choice, confidence and response time), and show that they reproduce most established empirical results in the field of value-based decision making. Finally, we discuss the possible connections between oMCD and most prominent neurocognitive theories about decision control and mental effort regulation. How should the mind allocate resources to make good decisions? In the online metacognitive control of decisions model, subjective decision confidence is used as the benefit term of the resource allocation problem to optimize the processing of decision-relevant information.

Abstract Image

决策的在线元认知控制
困难的决策通常会涉及脑力劳动,而脑力劳动会随着处理决策相关信息的认知(如记忆、注意力)资源的部署而增加。但大脑是如何调节脑力劳动的呢?一种可能性是大脑优化资源分配问题,即投入的资源量平衡其预期成本(即努力)和收益。我们的工作假设是,主观决策信心作为资源分配问题的收益项,因此决策控制具有 "元认知 "性质。在这里,我们提出了一个在线元认知决策控制或 oMCD 的计算模型。从形式上看,oMCD 是一个马尔可夫决策过程,它能在对底层决策系统的内部运作不可知的假设条件下优化解决随之而来的资源分配问题。我们展示了这如何使 oMCD 成为一大类决策过程(包括但不限于渐进属性整合)的准最优控制策略。我们揭示了 oMCD 的主要特性(在选择、置信度和响应时间方面),并表明这些特性重现了基于价值的决策领域中大多数既定的经验结果。最后,我们讨论了 oMCD 与有关决策控制和脑力调节的最著名神经认知理论之间可能存在的联系。大脑应如何分配资源以做出正确决策?在决策在线元认知控制模型中,主观决策信心被用作资源分配问题的收益项,以优化决策相关信息的处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信