Characterizing the Atmospheric Mn Cycle and Its Impact on Terrestrial Biogeochemistry

IF 5.4 2区 地球科学 Q1 ENVIRONMENTAL SCIENCES
Louis Lu, Longlei Li, Sagar Rathod, Peter Hess, Carmen Martínez, Nicole Fernandez, Christine Goodale, Janice Thies, Michelle Y. Wong, Maria Grazia Alaimo, Paulo Artaxo, Francisco Barraza, Africa Barreto, David Beddows, Shankarararman Chellam, Ying Chen, Patrick Chuang, David D. Cohen, Gaetano Dongarrà, Cassandra Gaston, Darío Gómez, Yasser Morera-Gómez, Hannele Hakola, Jenny Hand, Roy Harrison, Philip Hopke, Christoph Hueglin, Yuan-Wen Kuang, Katriina Kyllönen, Fabrice Lambert, Willy Maenhaut, Randall Martin, Adina Paytan, Joseph Prospero, Yenny González, Sergio Rodriguez, Patricia Smichowski, Daniela Varrica, Brenna Walsh, Crystal Weagle, Yi-Hua Xiao, Natalie Mahowald
{"title":"Characterizing the Atmospheric Mn Cycle and Its Impact on Terrestrial Biogeochemistry","authors":"Louis Lu,&nbsp;Longlei Li,&nbsp;Sagar Rathod,&nbsp;Peter Hess,&nbsp;Carmen Martínez,&nbsp;Nicole Fernandez,&nbsp;Christine Goodale,&nbsp;Janice Thies,&nbsp;Michelle Y. Wong,&nbsp;Maria Grazia Alaimo,&nbsp;Paulo Artaxo,&nbsp;Francisco Barraza,&nbsp;Africa Barreto,&nbsp;David Beddows,&nbsp;Shankarararman Chellam,&nbsp;Ying Chen,&nbsp;Patrick Chuang,&nbsp;David D. Cohen,&nbsp;Gaetano Dongarrà,&nbsp;Cassandra Gaston,&nbsp;Darío Gómez,&nbsp;Yasser Morera-Gómez,&nbsp;Hannele Hakola,&nbsp;Jenny Hand,&nbsp;Roy Harrison,&nbsp;Philip Hopke,&nbsp;Christoph Hueglin,&nbsp;Yuan-Wen Kuang,&nbsp;Katriina Kyllönen,&nbsp;Fabrice Lambert,&nbsp;Willy Maenhaut,&nbsp;Randall Martin,&nbsp;Adina Paytan,&nbsp;Joseph Prospero,&nbsp;Yenny González,&nbsp;Sergio Rodriguez,&nbsp;Patricia Smichowski,&nbsp;Daniela Varrica,&nbsp;Brenna Walsh,&nbsp;Crystal Weagle,&nbsp;Yi-Hua Xiao,&nbsp;Natalie Mahowald","doi":"10.1029/2023GB007967","DOIUrl":null,"url":null,"abstract":"<p>The role of manganese (Mn) in ecosystem carbon (C) biogeochemical cycling is gaining increasing attention. While soil Mn is mainly derived from bedrock, atmospheric deposition could be a major source of Mn to surface soils, with implications for soil C cycling. However, quantification of the atmospheric Mn cycle, which comprises emissions from natural (desert dust, sea salts, volcanoes, primary biogenic particles, and wildfires) and anthropogenic sources (e.g., industrialization and land-use change due to agriculture), transport, and deposition, remains uncertain. Here, we use compiled emission data sets for each identified source to model and quantify the atmospheric Mn cycle by combining an atmospheric model and in situ atmospheric concentration measurements. We estimated global emissions of atmospheric Mn in aerosols (&lt;10 μm in aerodynamic diameter) to be 1,400 Gg Mn year<sup>−1</sup>. Approximately 31% of the emissions come from anthropogenic sources. Deposition of the anthropogenic Mn shortened Mn “pseudo” turnover times in 1-m-thick surface soils (ranging from 1,000 to over 10,000,000 years) by 1–2 orders of magnitude in industrialized regions. Such anthropogenic Mn inputs boosted the Mn-to-N ratio of the atmospheric deposition in non-desert dominated regions (between 5 × 10<sup>−5</sup> and 0.02) across industrialized areas, but that was still lower than soil Mn-to-N ratio by 1–3 orders of magnitude. Correlation analysis revealed a negative relationship between Mn deposition and topsoil C density across temperate and (sub)tropical forests, consisting with atmospheric Mn deposition enhancing carbon respiration as seen in in situ biogeochemical studies.</p>","PeriodicalId":12729,"journal":{"name":"Global Biogeochemical Cycles","volume":"38 4","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2023GB007967","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Biogeochemical Cycles","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023GB007967","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The role of manganese (Mn) in ecosystem carbon (C) biogeochemical cycling is gaining increasing attention. While soil Mn is mainly derived from bedrock, atmospheric deposition could be a major source of Mn to surface soils, with implications for soil C cycling. However, quantification of the atmospheric Mn cycle, which comprises emissions from natural (desert dust, sea salts, volcanoes, primary biogenic particles, and wildfires) and anthropogenic sources (e.g., industrialization and land-use change due to agriculture), transport, and deposition, remains uncertain. Here, we use compiled emission data sets for each identified source to model and quantify the atmospheric Mn cycle by combining an atmospheric model and in situ atmospheric concentration measurements. We estimated global emissions of atmospheric Mn in aerosols (<10 μm in aerodynamic diameter) to be 1,400 Gg Mn year−1. Approximately 31% of the emissions come from anthropogenic sources. Deposition of the anthropogenic Mn shortened Mn “pseudo” turnover times in 1-m-thick surface soils (ranging from 1,000 to over 10,000,000 years) by 1–2 orders of magnitude in industrialized regions. Such anthropogenic Mn inputs boosted the Mn-to-N ratio of the atmospheric deposition in non-desert dominated regions (between 5 × 10−5 and 0.02) across industrialized areas, but that was still lower than soil Mn-to-N ratio by 1–3 orders of magnitude. Correlation analysis revealed a negative relationship between Mn deposition and topsoil C density across temperate and (sub)tropical forests, consisting with atmospheric Mn deposition enhancing carbon respiration as seen in in situ biogeochemical studies.

Abstract Image

表征大气锰循环及其对陆地生物地球化学的影响
锰(Mn)在生态系统碳(C)生物地球化学循环中的作用日益受到关注。虽然土壤中的锰主要来自基岩,但大气沉降可能是地表土壤中锰的主要来源,并对土壤碳循环产生影响。然而,大气锰循环包括自然排放(沙漠尘埃、海盐、火山、原生生物颗粒和野火)和人为排放(如工业化和农业导致的土地利用变化)、传输和沉积,其量化仍不确定。在这里,我们使用针对每个已确定来源的汇编排放数据集,结合大气模型和现场大气浓度测量结果,对大气锰循环进行建模和量化。我们估计全球气溶胶(气动直径为 10 微米)中的大气锰排放量为每年 1,400 千兆克锰。其中约 31% 的排放量来自人为来源。人为锰沉积使工业化地区 1 米厚表层土壤中的锰 "伪 "周转时间(从 1000 年到超过 1000 万年不等)缩短了 1-2 个数量级。这种人为锰输入提高了整个工业化地区非沙漠主导地区大气沉积的锰-氮比值(介于 5 × 10-5 和 0.02 之间),但仍比土壤的锰-氮比值低 1-3 个数量级。相关分析表明,在温带和(亚)热带森林中,锰沉积与表土碳密度之间存在负相关关系,这与大气锰沉积促进碳呼吸有关,正如在原地生物地球化学研究中看到的那样。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Global Biogeochemical Cycles
Global Biogeochemical Cycles 环境科学-地球科学综合
CiteScore
8.90
自引率
7.70%
发文量
141
审稿时长
8-16 weeks
期刊介绍: Global Biogeochemical Cycles (GBC) features research on regional to global biogeochemical interactions, as well as more local studies that demonstrate fundamental implications for biogeochemical processing at regional or global scales. Published papers draw on a wide array of methods and knowledge and extend in time from the deep geologic past to recent historical and potential future interactions. This broad scope includes studies that elucidate human activities as interactive components of biogeochemical cycles and physical Earth Systems including climate. Authors are required to make their work accessible to a broad interdisciplinary range of scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信