Fengyan Zhang , Yonglu Dong , Shudong Lin , Xuefeng Gui , Jiwen Hu
{"title":"Investigation of soybean oil epoxidation process with phase transfer catalyst: Risk of thermal runaway","authors":"Fengyan Zhang , Yonglu Dong , Shudong Lin , Xuefeng Gui , Jiwen Hu","doi":"10.1016/j.tca.2024.179722","DOIUrl":null,"url":null,"abstract":"<div><p>This paper explores an efficient and eco-friendly epoxidation process using the phase transfer catalyst ([(C<sub>18</sub>H<sub>37</sub>)<sub>2</sub>(CH<sub>3</sub>)<sub>2</sub>N]<sub>3</sub>{PO<sub>4</sub>[W(O)(O<sub>2</sub>)<sub>2</sub>]<sub>4</sub>}), which offers more advantages over the use of carboxylic and inorganic acids as catalysts in the Prileschajew epoxidation process. Consequently, a study of the process's thermal hazards is imperative. The paper conducts a comprehensive analysis of the process, employing a combination of calorimetric techniques. The critical runaway temperature, stabilization temperature, and required heat dissipation rate to prevent thermal runaway reactions were calculated using the Semenov model. On-line Fourier transform infrared spectroscopy and reaction calorimetry were used to relate the reaction mechanism and exothermic behavior of the actual production process, and a reliable model was developed for the calculation of reaction enthalpy. The findings indicate that the thermal risk depends on the rate of double bond epoxidation, which provides offering valuable insights for safe industrial-scale ESO production.</p></div>","PeriodicalId":23058,"journal":{"name":"Thermochimica Acta","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermochimica Acta","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0040603124000613","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This paper explores an efficient and eco-friendly epoxidation process using the phase transfer catalyst ([(C18H37)2(CH3)2N]3{PO4[W(O)(O2)2]4}), which offers more advantages over the use of carboxylic and inorganic acids as catalysts in the Prileschajew epoxidation process. Consequently, a study of the process's thermal hazards is imperative. The paper conducts a comprehensive analysis of the process, employing a combination of calorimetric techniques. The critical runaway temperature, stabilization temperature, and required heat dissipation rate to prevent thermal runaway reactions were calculated using the Semenov model. On-line Fourier transform infrared spectroscopy and reaction calorimetry were used to relate the reaction mechanism and exothermic behavior of the actual production process, and a reliable model was developed for the calculation of reaction enthalpy. The findings indicate that the thermal risk depends on the rate of double bond epoxidation, which provides offering valuable insights for safe industrial-scale ESO production.
期刊介绍:
Thermochimica Acta publishes original research contributions covering all aspects of thermoanalytical and calorimetric methods and their application to experimental chemistry, physics, biology and engineering. The journal aims to span the whole range from fundamental research to practical application.
The journal focuses on the research that advances physical and analytical science of thermal phenomena. Therefore, the manuscripts are expected to provide important insights into the thermal phenomena studied or to propose significant improvements of analytical or computational techniques employed in thermal studies. Manuscripts that report the results of routine thermal measurements are not suitable for publication in Thermochimica Acta.
The journal particularly welcomes papers from newly emerging areas as well as from the traditional strength areas:
- New and improved instrumentation and methods
- Thermal properties and behavior of materials
- Kinetics of thermally stimulated processes