Alumina Incorporation in Self-Supported Poly(ethylenimine) Sorbents for Direct Air Capture

Pavithra Narayanan, Pranav Guntupalli, Ryan P. Lively* and Christopher W. Jones*, 
{"title":"Alumina Incorporation in Self-Supported Poly(ethylenimine) Sorbents for Direct Air Capture","authors":"Pavithra Narayanan,&nbsp;Pranav Guntupalli,&nbsp;Ryan P. Lively* and Christopher W. Jones*,&nbsp;","doi":"10.1021/cbe.3c00079","DOIUrl":null,"url":null,"abstract":"<p >Self-supported branched poly(ethylenimine) scaffolds with ordered macropores are synthesized with and without Al<sub>2</sub>O<sub>3</sub> powder additive by cross-linking poly(ethylenimine) (PEI) with poly(ethylene glycol) diglycidyl ether (PEGDGE) at −196 °C. The scaffolds’ CO<sub>2</sub> uptake performance is compared with a conventional sorbent, i.e., PEI impregnated on an Al<sub>2</sub>O<sub>3</sub> support. PEI scaffolds with Al<sub>2</sub>O<sub>3</sub> additive show narrow pore size distribution and thinner pore walls than alumina-free materials, facilitating higher CO<sub>2</sub> uptake at conditions relevant to direct air capture. The PEI scaffold containing 6.5 wt % Al<sub>2</sub>O<sub>3</sub> had the highest CO<sub>2</sub> uptake of 1.23 mmol/g of sorbent under 50% RH 400 ppm of CO<sub>2</sub> conditions. <i>In situ</i> DRIFT spectroscopy and temperature-programmed desorption experiments show a significant CO<sub>2</sub> uptake contribution via physisorption as well as carbamic acid formation, with lower CO<sub>2</sub> binding energies in PEI scaffolds relative to conventional PEI sorbents, likely a result of a lower population of primary amines due to the amine cross-linking reactions during scaffold synthesis. The PEI scaffold containing 6.5 wt % Al<sub>2</sub>O<sub>3</sub> is estimated to have the lowest desorption energy penalty under humid conditions, 4.6 GJ/t<sub>CO2</sub>, among the sorbents studied.</p>","PeriodicalId":100230,"journal":{"name":"Chem & Bio Engineering","volume":"1 2","pages":"157–170"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/cbe.3c00079","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem & Bio Engineering","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/cbe.3c00079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Self-supported branched poly(ethylenimine) scaffolds with ordered macropores are synthesized with and without Al2O3 powder additive by cross-linking poly(ethylenimine) (PEI) with poly(ethylene glycol) diglycidyl ether (PEGDGE) at −196 °C. The scaffolds’ CO2 uptake performance is compared with a conventional sorbent, i.e., PEI impregnated on an Al2O3 support. PEI scaffolds with Al2O3 additive show narrow pore size distribution and thinner pore walls than alumina-free materials, facilitating higher CO2 uptake at conditions relevant to direct air capture. The PEI scaffold containing 6.5 wt % Al2O3 had the highest CO2 uptake of 1.23 mmol/g of sorbent under 50% RH 400 ppm of CO2 conditions. In situ DRIFT spectroscopy and temperature-programmed desorption experiments show a significant CO2 uptake contribution via physisorption as well as carbamic acid formation, with lower CO2 binding energies in PEI scaffolds relative to conventional PEI sorbents, likely a result of a lower population of primary amines due to the amine cross-linking reactions during scaffold synthesis. The PEI scaffold containing 6.5 wt % Al2O3 is estimated to have the lowest desorption energy penalty under humid conditions, 4.6 GJ/tCO2, among the sorbents studied.

Abstract Image

氧化铝掺入自支撑聚(乙烯亚胺)吸附剂用于直接空气捕获
通过在 -196 °C 下用聚乙二醇二缩水甘油醚(PEGDGE)交联聚(乙烯亚胺)(PEI),合成了具有有序大孔的自支撑支化聚(乙烯亚胺)支架,并添加或不添加 Al2O3 粉末。该支架的二氧化碳吸收性能与传统吸附剂(即浸渍在 Al2O3 载体上的 PEI)进行了比较。与不含氧化铝的材料相比,添加了 Al2O3 添加剂的 PEI 支架显示出狭窄的孔径分布和更薄的孔壁,有利于在与直接空气捕获相关的条件下吸收更多的二氧化碳。在 50% 相对湿度、400 ppm 二氧化碳条件下,含有 6.5 wt % Al2O3 的 PEI 支架对二氧化碳的吸收率最高,达到 1.23 mmol/g(吸附剂)。原位 DRIFT 光谱和温度编程解吸实验表明,二氧化碳的吸收主要是通过物理吸附和氨基甲酸的形成实现的,与传统的 PEI 吸附剂相比,PEI 支架中的二氧化碳结合能更低,这可能是支架合成过程中胺交联反应导致伯胺数量减少的结果。据估计,在所研究的吸附剂中,含有 6.5 wt % Al2O3 的 PEI 支架在潮湿条件下的解吸能耗最低,为 4.6 GJ/tCO2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信