Modeling county level COVID-19 transmission in the greater St. Louis area: Challenges of uncertainty and identifiability when fitting mechanistic models to time-varying processes

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Praachi Das , Morganne Igoe , Alexanderia Lacy , Trevor Farthing , Archana Timsina , Cristina Lanzas , Suzanne Lenhart , Agricola Odoi , Alun L. Lloyd
{"title":"Modeling county level COVID-19 transmission in the greater St. Louis area: Challenges of uncertainty and identifiability when fitting mechanistic models to time-varying processes","authors":"Praachi Das ,&nbsp;Morganne Igoe ,&nbsp;Alexanderia Lacy ,&nbsp;Trevor Farthing ,&nbsp;Archana Timsina ,&nbsp;Cristina Lanzas ,&nbsp;Suzanne Lenhart ,&nbsp;Agricola Odoi ,&nbsp;Alun L. Lloyd","doi":"10.1016/j.mbs.2024.109181","DOIUrl":null,"url":null,"abstract":"<div><p>We use a compartmental model with a time-varying transmission parameter to describe county level COVID-19 transmission in the greater St. Louis area of Missouri and investigate the challenges in fitting such a model to time-varying processes. We fit this model to synthetic and real confirmed case and hospital discharge data from May to December 2020 and calculate uncertainties in the resulting parameter estimates. We also explore non-identifiability within the estimated parameter set. We find that the death rate of infectious non-hospitalized individuals, the testing parameter and the initial number of exposed individuals are not identifiable based on an investigation of correlation coefficients between pairs of parameter estimates. We also explore how this non-identifiability ties back into uncertainties in the estimated parameters and find that it inflates uncertainty in the estimates of our time-varying transmission parameter. However, we do find that <span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span> is not highly affected by non-identifiability of its constituent components and the uncertainties associated with the quantity are smaller than those of the estimated parameters. Parameter values estimated from data will always be associated with some uncertainty and our work highlights the importance of conducting these analyses when fitting such models to real data. Exploring identifiability and uncertainty is crucial in revealing how much we can trust the parameter estimates.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0025556424000415/pdfft?md5=78dd5e205f58675ab71a389bf74a9740&pid=1-s2.0-S0025556424000415-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025556424000415","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We use a compartmental model with a time-varying transmission parameter to describe county level COVID-19 transmission in the greater St. Louis area of Missouri and investigate the challenges in fitting such a model to time-varying processes. We fit this model to synthetic and real confirmed case and hospital discharge data from May to December 2020 and calculate uncertainties in the resulting parameter estimates. We also explore non-identifiability within the estimated parameter set. We find that the death rate of infectious non-hospitalized individuals, the testing parameter and the initial number of exposed individuals are not identifiable based on an investigation of correlation coefficients between pairs of parameter estimates. We also explore how this non-identifiability ties back into uncertainties in the estimated parameters and find that it inflates uncertainty in the estimates of our time-varying transmission parameter. However, we do find that R0 is not highly affected by non-identifiability of its constituent components and the uncertainties associated with the quantity are smaller than those of the estimated parameters. Parameter values estimated from data will always be associated with some uncertainty and our work highlights the importance of conducting these analyses when fitting such models to real data. Exploring identifiability and uncertainty is crucial in revealing how much we can trust the parameter estimates.

大圣路易斯地区县级 COVID-19 传播建模:为时变过程拟合机理模型时的不确定性和可识别性挑战。
我们使用一个具有时变传播参数的分区模型来描述密苏里州大圣路易斯地区的县级 COVID-19 传播情况,并研究了将这种模型拟合到时变过程中所面临的挑战。我们将该模型与 2020 年 5 月至 12 月的合成和真实确诊病例及医院出院数据进行了拟合,并计算了由此得出的参数估计的不确定性。我们还探讨了估计参数集中的不可识别性。根据对参数估算值之间相关系数的调查,我们确定非住院感染者的死亡率、检测参数和初始暴露人数是不可识别的。我们还探讨了这种不可识别性如何与估计参数的不确定性联系在一起,并发现它增加了时变传播参数估计的不确定性。不过,我们确实发现 R0 受其组成成分不可识别性的影响不大,而且与该数量相关的不确定性小于估计参数的不确定性。从数据中估算出的参数值总是带有一定的不确定性,我们的工作强调了在将此类模型拟合到真实数据时进行这些分析的重要性。探索可识别性和不确定性对于揭示我们在多大程度上可以相信参数估计值至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信