{"title":"Sourcebook update: RBC hemolysis studies using a simple modified blood film technique.","authors":"Ali Al-Kaleel, Lubna Al-Gialani","doi":"10.1152/advan.00033.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Water movement across the cell membrane is crucial, with red blood cells (RBCs) experiencing the flow of water in both directions at a rate of approximately 100 times their volume per second. This process typically results in no net water flow due to an equal balance of water movement in opposite directions, a phenomenon known as osmosis, driven by water potential or impermeant solute concentration. Understanding osmosis is essential for both physiology and medical practice, yet its complexity may not be effectively conveyed to the students through traditional teaching methods. This study presents a novel approach to observing the osmotic effect on RBCs using a simple, modified blood film technique. Aimed at enhancing educational understanding of cellular behavior in different osmotic environments, this method provides a practical hands-on learning experience. By applying various osmotic solutions to prepared blood films and observing the resultant morphological changes in RBCs under a microscope, this technique allows for direct visualization of osmosis in action.<b>NEW & NOTEWORTHY</b> This study presents an innovative teaching approach for understanding osmosis and its effects on red blood cells. Using a simple, modified blood film technique, students can visually observe and engage with the dynamic process of osmosis. This hands-on method enhances learning, making complex physiological concepts accessible and practical. Ideal for resource-limited settings, it bridges theoretical knowledge and practical application, transforming physiology education.</p>","PeriodicalId":50852,"journal":{"name":"Advances in Physiology Education","volume":" ","pages":"427-429"},"PeriodicalIF":1.7000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Physiology Education","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1152/advan.00033.2024","RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
引用次数: 0
Abstract
Water movement across the cell membrane is crucial, with red blood cells (RBCs) experiencing the flow of water in both directions at a rate of approximately 100 times their volume per second. This process typically results in no net water flow due to an equal balance of water movement in opposite directions, a phenomenon known as osmosis, driven by water potential or impermeant solute concentration. Understanding osmosis is essential for both physiology and medical practice, yet its complexity may not be effectively conveyed to the students through traditional teaching methods. This study presents a novel approach to observing the osmotic effect on RBCs using a simple, modified blood film technique. Aimed at enhancing educational understanding of cellular behavior in different osmotic environments, this method provides a practical hands-on learning experience. By applying various osmotic solutions to prepared blood films and observing the resultant morphological changes in RBCs under a microscope, this technique allows for direct visualization of osmosis in action.NEW & NOTEWORTHY This study presents an innovative teaching approach for understanding osmosis and its effects on red blood cells. Using a simple, modified blood film technique, students can visually observe and engage with the dynamic process of osmosis. This hands-on method enhances learning, making complex physiological concepts accessible and practical. Ideal for resource-limited settings, it bridges theoretical knowledge and practical application, transforming physiology education.
期刊介绍:
Advances in Physiology Education promotes and disseminates educational scholarship in order to enhance teaching and learning of physiology, neuroscience and pathophysiology. The journal publishes peer-reviewed descriptions of innovations that improve teaching in the classroom and laboratory, essays on education, and review articles based on our current understanding of physiological mechanisms. Submissions that evaluate new technologies for teaching and research, and educational pedagogy, are especially welcome. The audience for the journal includes educators at all levels: K–12, undergraduate, graduate, and professional programs.