{"title":"Voltammetric measurement of catechol-O-methyltransferase inhibitor tolcapone in the pharmaceutical form on the boron-doped diamond electrode.","authors":"Musa Kiran, Yavuz Yardim","doi":"10.55730/1300-0527.3650","DOIUrl":null,"url":null,"abstract":"<p><p>This study presents an electroanalytical approach to measure the catechol-O-methyltransferase (COMT) inhibitor tolcapone (TOL) using a boron-doped diamond (BDD) electrode. The application of cyclic voltammetry (CV) technique revealed that TOL exhibited a distinct, diffusion-controlled, irreversible anodic peak at a potential of approximately +0.71 V (vs. Ag/AgCl) in a 0.1 mol L<sup>-1</sup> phosphate buffer solution (PBS) with a pH of 2.5. The oxidation of TOL is highly dependent on the pH and supporting electrolytes. Based on the data obtained from the pH investigation, a proposed mechanism for the electro-oxidation of TOL is suggested. Using the square wave voltammetry (SWV) technique, a satisfactory linear relationship was observed at approximately +0.66 V in a 0.1 mol L<sup>-1</sup> PBS with a pH of 2.5. The presented method exhibited linearity within the concentration range between 1.0-50.0 μg mL<sup>-1</sup> (3.7 × 10<sup>-6</sup>-1.8 × 10<sup>-4</sup> mol L<sup>-1</sup>), with a limit of detection (LOD) of 0.29 μg mL<sup>-1</sup> (1.1 × 10<sup>-6</sup> mol L<sup>-1</sup>). The BDD electrode demonstrated good selectivity against inorganic ions and filler materials interference. Finally, the suitability of the developed approach was assessed by measuring TOL in tablet formulations, resulting in favorable recoveries ranging from 103.4% to 106.2%.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10965188/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.55730/1300-0527.3650","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents an electroanalytical approach to measure the catechol-O-methyltransferase (COMT) inhibitor tolcapone (TOL) using a boron-doped diamond (BDD) electrode. The application of cyclic voltammetry (CV) technique revealed that TOL exhibited a distinct, diffusion-controlled, irreversible anodic peak at a potential of approximately +0.71 V (vs. Ag/AgCl) in a 0.1 mol L-1 phosphate buffer solution (PBS) with a pH of 2.5. The oxidation of TOL is highly dependent on the pH and supporting electrolytes. Based on the data obtained from the pH investigation, a proposed mechanism for the electro-oxidation of TOL is suggested. Using the square wave voltammetry (SWV) technique, a satisfactory linear relationship was observed at approximately +0.66 V in a 0.1 mol L-1 PBS with a pH of 2.5. The presented method exhibited linearity within the concentration range between 1.0-50.0 μg mL-1 (3.7 × 10-6-1.8 × 10-4 mol L-1), with a limit of detection (LOD) of 0.29 μg mL-1 (1.1 × 10-6 mol L-1). The BDD electrode demonstrated good selectivity against inorganic ions and filler materials interference. Finally, the suitability of the developed approach was assessed by measuring TOL in tablet formulations, resulting in favorable recoveries ranging from 103.4% to 106.2%.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.