{"title":"Photophysical, thermal, and DFT studies on a tetraaryl-azadipyrromethene ligand and its zinc(II) complex.","authors":"Gökhan Sevinç","doi":"10.55730/1300-0527.3626","DOIUrl":null,"url":null,"abstract":"<p><p>An azadipyrromethene ligand (<b>H1</b>) and homoleptic zinc(II) (<b>H1-Zn</b>) complex were synthesized. The resulting structures were elucidated by NMR, FTIR, and HRMS techniques. The photophysical properties and effects of complexing the zinc(II) atom to azadipyrromethene ligands in solution were studied by means of UV-Vis absorption and fluorescence spectroscopy. Experimental findings were elucidated using density functional theory computations and interfragment charge transfer (IFCT) and electron-hole analyses. The fluorescence features were found to be negligible. The ligand molecule decayed at a rate of 3% while the complex decayed at 2% upon photoirradiation based on photostability experiments. The singlet oxygen quantum yields of the ligand and complex were calculated as 0.127 and 0.233, respectively, signifying low photodynamic activity. The charge transfer transitions were determined between reciprocal ligands responsible for the red shift of the main absorption band by IFCT and electron-hole analysis. Compounds in an inert N<sub>2</sub> atmosphere demonstrated high thermal stability. Although the thermogravimetric analysis (TGA) and derivative thermogravimetry curves of the complexes were similar, zinc(II) coordination and homoleptic complex formation reduced the degradation temperatures. These findings suggest that azadipyrromethene and the Zn(II) class of chromophores have beneficial features for use in the development of novel photo- and thermostable materials that combine charge transfer with low energy in the visible and near infrared regions.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10965187/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.55730/1300-0527.3626","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
An azadipyrromethene ligand (H1) and homoleptic zinc(II) (H1-Zn) complex were synthesized. The resulting structures were elucidated by NMR, FTIR, and HRMS techniques. The photophysical properties and effects of complexing the zinc(II) atom to azadipyrromethene ligands in solution were studied by means of UV-Vis absorption and fluorescence spectroscopy. Experimental findings were elucidated using density functional theory computations and interfragment charge transfer (IFCT) and electron-hole analyses. The fluorescence features were found to be negligible. The ligand molecule decayed at a rate of 3% while the complex decayed at 2% upon photoirradiation based on photostability experiments. The singlet oxygen quantum yields of the ligand and complex were calculated as 0.127 and 0.233, respectively, signifying low photodynamic activity. The charge transfer transitions were determined between reciprocal ligands responsible for the red shift of the main absorption band by IFCT and electron-hole analysis. Compounds in an inert N2 atmosphere demonstrated high thermal stability. Although the thermogravimetric analysis (TGA) and derivative thermogravimetry curves of the complexes were similar, zinc(II) coordination and homoleptic complex formation reduced the degradation temperatures. These findings suggest that azadipyrromethene and the Zn(II) class of chromophores have beneficial features for use in the development of novel photo- and thermostable materials that combine charge transfer with low energy in the visible and near infrared regions.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.