Melike Güngör, Kevser Sağlamkol, Zeynep Yağmur Baydemir, Ali Kiliç
{"title":"Production of gelatin fibrous mats using different nanofiber production methods for medical applications and comparison of their properties.","authors":"Melike Güngör, Kevser Sağlamkol, Zeynep Yağmur Baydemir, Ali Kiliç","doi":"10.55730/1300-0527.3631","DOIUrl":null,"url":null,"abstract":"<p><p>In the literature, there are studies on medical applications using different nanofiber production methods with natural polymers. However, each system has different fiber-forming capabilities. For this reason, in this study, we investigated the production of nanofibers from a biodegradable natural polymer, gelatin, using four separate nanofiber production methods, namely electrospinning (ES), electroblowing (EB), solution blowing (SB), and centrifugal spinning (CS). Our aim was to determine the most suitable fibrous web structure for medical applications and contribute to science in this respect. It was observed that the thinnest fibers (386 nm) and the heaviest mats (15.975 g m<sup>-2</sup>) were produced by the SB method as a result of using 10 wt.% gelatin solution with a total of 10 mL. With the ES and EB methods, tighter fabric structures were obtained than with the others due to the presence of electric fields. In the CS method, more and bead-free fibers were produced due to the increase in viscosity with a 12.5 wt.% gelatin solution. Moreover, with the concentration of 12.5 wt.%, the fiber diameters of SB and CS samples increased about 2-fold.</p>","PeriodicalId":23367,"journal":{"name":"Turkish Journal of Chemistry","volume":"47 6","pages":"1508-1517"},"PeriodicalIF":1.3000,"publicationDate":"2023-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10965175/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Turkish Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.55730/1300-0527.3631","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In the literature, there are studies on medical applications using different nanofiber production methods with natural polymers. However, each system has different fiber-forming capabilities. For this reason, in this study, we investigated the production of nanofibers from a biodegradable natural polymer, gelatin, using four separate nanofiber production methods, namely electrospinning (ES), electroblowing (EB), solution blowing (SB), and centrifugal spinning (CS). Our aim was to determine the most suitable fibrous web structure for medical applications and contribute to science in this respect. It was observed that the thinnest fibers (386 nm) and the heaviest mats (15.975 g m-2) were produced by the SB method as a result of using 10 wt.% gelatin solution with a total of 10 mL. With the ES and EB methods, tighter fabric structures were obtained than with the others due to the presence of electric fields. In the CS method, more and bead-free fibers were produced due to the increase in viscosity with a 12.5 wt.% gelatin solution. Moreover, with the concentration of 12.5 wt.%, the fiber diameters of SB and CS samples increased about 2-fold.
期刊介绍:
The Turkish Journal of Chemistry is a bimonthly multidisciplinary journal published by the Scientific and Technological Research Council of Turkey (TÜBİTAK).
The journal is dedicated to dissemination of knowledge in all disciplines of chemistry (organic, inorganic, physical, polymeric, technical, theoretical and analytical chemistry) as well as research at the interface with other sciences especially in chemical engineering where molecular aspects are key to the findings.
The journal accepts English-language original manuscripts and contribution is open to researchers of all nationalities.
The journal publishes refereed original papers, reviews, letters to editor and issues devoted to special fields.
All manuscripts are peer-reviewed and electronic processing ensures accurate reproduction of text and data, plus publication times as short as possible.