Santiago Herrera-Guardiola, Carlos H Valencia-Llano, Miguel Á Casillas-Santana, Farid A Dipp-Velázquez, Juan F Aristizábal-Pérez
{"title":"Evaluation of cellular viability in chitosan/L-arginine hydrogels.","authors":"Santiago Herrera-Guardiola, Carlos H Valencia-Llano, Miguel Á Casillas-Santana, Farid A Dipp-Velázquez, Juan F Aristizábal-Pérez","doi":"10.17219/pim/184260","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>There is a lack of studies evaluating the toxicity of nitric oxide (NO) precursors in chitosan/L-arginine hydrogels and their topical administration. However, clarifying the characteristics of these elements is essential for their possible use in non-surgical techniques of tooth movement acceleration. Such characteristics include interaction with different cell types, metabolism and drug safety.</p><p><strong>Objectives: </strong>This in vitro study aimed to assess the cytotoxicity of chitosan hydrogels on human HeLa cells using different concentrations of L-arginine.</p><p><strong>Material and methods: </strong>The hydrogels were synthesized in a materials engineering laboratory, with a controlled environment, using 4 different L-arginine concentrations of 0%, 10%, 15%, and 20%. Once the hydrogels were prepared, their physical and chemical properties were characterized, and viability analysis was performed using 2 different methods, including a 48-h assay with Artemia salina nauplii and a 24-h cell culture with human HeLa cells followed by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) proliferation assay. Data analysis was performed using a Mann-Whitney U test to evaluate positive and negative controls in the cell culture, with a significance level of 0.01. A Wilcoxon paired test contrasted the 24-h compared to 48-h Artemia salina assays, with a Kruskal-Wallis and post hoc Dunn test used to compare groups using a significance level of 0.05.</p><p><strong>Results: </strong>In the more viscous hydrogels, Artemia salina nauplii decreased drastically in 24 h, while the 15% and 20% hydrogels had no statistical differences from the negative control. The 10% and 20% hydrogels were statistically different from the negative control when comparing cell culture data.</p><p><strong>Conclusions: </strong>Our findings suggest that chitosan/L-arginine hydrogels could be used in humans without toxic effects. However, more trials and tests are needed to evaluate tooth movement rate during orthodontic treatment.</p>","PeriodicalId":20355,"journal":{"name":"Polimery w medycynie","volume":" ","pages":"7-14"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polimery w medycynie","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17219/pim/184260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Background: There is a lack of studies evaluating the toxicity of nitric oxide (NO) precursors in chitosan/L-arginine hydrogels and their topical administration. However, clarifying the characteristics of these elements is essential for their possible use in non-surgical techniques of tooth movement acceleration. Such characteristics include interaction with different cell types, metabolism and drug safety.
Objectives: This in vitro study aimed to assess the cytotoxicity of chitosan hydrogels on human HeLa cells using different concentrations of L-arginine.
Material and methods: The hydrogels were synthesized in a materials engineering laboratory, with a controlled environment, using 4 different L-arginine concentrations of 0%, 10%, 15%, and 20%. Once the hydrogels were prepared, their physical and chemical properties were characterized, and viability analysis was performed using 2 different methods, including a 48-h assay with Artemia salina nauplii and a 24-h cell culture with human HeLa cells followed by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) proliferation assay. Data analysis was performed using a Mann-Whitney U test to evaluate positive and negative controls in the cell culture, with a significance level of 0.01. A Wilcoxon paired test contrasted the 24-h compared to 48-h Artemia salina assays, with a Kruskal-Wallis and post hoc Dunn test used to compare groups using a significance level of 0.05.
Results: In the more viscous hydrogels, Artemia salina nauplii decreased drastically in 24 h, while the 15% and 20% hydrogels had no statistical differences from the negative control. The 10% and 20% hydrogels were statistically different from the negative control when comparing cell culture data.
Conclusions: Our findings suggest that chitosan/L-arginine hydrogels could be used in humans without toxic effects. However, more trials and tests are needed to evaluate tooth movement rate during orthodontic treatment.