{"title":"Study of prognostic splicing factors in cancer using machine learning approaches.","authors":"Mengyuan Yang, Jiajia Liu, Pora Kim, Xiaobo Zhou","doi":"10.1093/hmg/ddae047","DOIUrl":null,"url":null,"abstract":"<p><p>Splicing factors (SFs) are the major RNA-binding proteins (RBPs) and key molecules that regulate the splicing of mRNA molecules through binding to mRNAs. The expression of splicing factors is frequently deregulated in different cancer types, causing the generation of oncogenic proteins involved in cancer hallmarks. In this study, we investigated the genes that encode RNA-binding proteins and identified potential splicing factors that contribute to the aberrant splicing applying a random forest classification model. The result suggested 56 splicing factors were related to the prognosis of 13 cancers, two SF complexes in liver hepatocellular carcinoma, and one SF complex in esophageal carcinoma. Further systematic bioinformatics studies on these cancer prognostic splicing factors and their related alternative splicing events revealed the potential regulations in a cancer-specific manner. Our analysis found high ILF2-ILF3 expression correlates with poor prognosis in LIHC through alternative splicing. These findings emphasize the importance of SFs as potential indicators for prognosis or targets for therapeutic interventions. Their roles in cancer exhibit complexity and are contingent upon the specific context in which they operate. This recognition further underscores the need for a comprehensive understanding and exploration of the role of SFs in different types of cancer, paving the way for their potential utilization in prognostic assessments and the development of targeted therapies.</p>","PeriodicalId":13070,"journal":{"name":"Human molecular genetics","volume":" ","pages":"1131-1141"},"PeriodicalIF":3.1000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11190612/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human molecular genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/hmg/ddae047","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Splicing factors (SFs) are the major RNA-binding proteins (RBPs) and key molecules that regulate the splicing of mRNA molecules through binding to mRNAs. The expression of splicing factors is frequently deregulated in different cancer types, causing the generation of oncogenic proteins involved in cancer hallmarks. In this study, we investigated the genes that encode RNA-binding proteins and identified potential splicing factors that contribute to the aberrant splicing applying a random forest classification model. The result suggested 56 splicing factors were related to the prognosis of 13 cancers, two SF complexes in liver hepatocellular carcinoma, and one SF complex in esophageal carcinoma. Further systematic bioinformatics studies on these cancer prognostic splicing factors and their related alternative splicing events revealed the potential regulations in a cancer-specific manner. Our analysis found high ILF2-ILF3 expression correlates with poor prognosis in LIHC through alternative splicing. These findings emphasize the importance of SFs as potential indicators for prognosis or targets for therapeutic interventions. Their roles in cancer exhibit complexity and are contingent upon the specific context in which they operate. This recognition further underscores the need for a comprehensive understanding and exploration of the role of SFs in different types of cancer, paving the way for their potential utilization in prognostic assessments and the development of targeted therapies.
期刊介绍:
Human Molecular Genetics concentrates on full-length research papers covering a wide range of topics in all aspects of human molecular genetics. These include:
the molecular basis of human genetic disease
developmental genetics
cancer genetics
neurogenetics
chromosome and genome structure and function
therapy of genetic disease
stem cells in human genetic disease and therapy, including the application of iPS cells
genome-wide association studies
mouse and other models of human diseases
functional genomics
computational genomics
In addition, the journal also publishes research on other model systems for the analysis of genes, especially when there is an obvious relevance to human genetics.