Second-Order Effects of Chemotherapy Pharmacodynamics and Pharmacokinetics on Tumor Regression and Cachexia.

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Luke Pierik, Patricia McDonald, Alexander R A Anderson, Jeffrey West
{"title":"Second-Order Effects of Chemotherapy Pharmacodynamics and Pharmacokinetics on Tumor Regression and Cachexia.","authors":"Luke Pierik, Patricia McDonald, Alexander R A Anderson, Jeffrey West","doi":"10.1007/s11538-024-01278-0","DOIUrl":null,"url":null,"abstract":"<p><p>Drug dose response curves are ubiquitous in cancer biology, but these curves are often used to measure differential response in first-order effects: the effectiveness of increasing the cumulative dose delivered. In contrast, second-order effects (the variance of drug dose) are often ignored. Knowledge of second-order effects may improve the design of chemotherapy scheduling protocols, leading to improvements in tumor response without changing the total dose delivered. By considering treatment schedules with identical cumulative dose delivered, we characterize differential treatment outcomes resulting from high variance schedules (e.g. high dose, low dose) and low variance schedules (constant dose). We extend a previous framework used to quantify second-order effects, known as antifragility theory, to investigate the role of drug pharmacokinetics. Using a simple one-compartment model, we find that high variance schedules are effective for a wide range of cumulative dose values. Next, using a mouse-parameterized two-compartment model of 5-fluorouracil, we show that schedule viability depends on initial tumor volume. Finally, we illustrate the trade-off between tumor response and lean mass preservation. Mathematical modeling indicates that high variance dose schedules provide a potential path forward in mitigating the risk of chemotherapy-associated cachexia by preserving lean mass without sacrificing tumor response.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11538-024-01278-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Drug dose response curves are ubiquitous in cancer biology, but these curves are often used to measure differential response in first-order effects: the effectiveness of increasing the cumulative dose delivered. In contrast, second-order effects (the variance of drug dose) are often ignored. Knowledge of second-order effects may improve the design of chemotherapy scheduling protocols, leading to improvements in tumor response without changing the total dose delivered. By considering treatment schedules with identical cumulative dose delivered, we characterize differential treatment outcomes resulting from high variance schedules (e.g. high dose, low dose) and low variance schedules (constant dose). We extend a previous framework used to quantify second-order effects, known as antifragility theory, to investigate the role of drug pharmacokinetics. Using a simple one-compartment model, we find that high variance schedules are effective for a wide range of cumulative dose values. Next, using a mouse-parameterized two-compartment model of 5-fluorouracil, we show that schedule viability depends on initial tumor volume. Finally, we illustrate the trade-off between tumor response and lean mass preservation. Mathematical modeling indicates that high variance dose schedules provide a potential path forward in mitigating the risk of chemotherapy-associated cachexia by preserving lean mass without sacrificing tumor response.

化疗药效学和药代动力学对肿瘤消退和恶病质的二阶效应
药物剂量反应曲线在癌症生物学中无处不在,但这些曲线通常用于测量一阶效应的差异反应:增加累积给药剂量的效果。相比之下,二阶效应(药物剂量的差异)往往被忽视。了解二阶效应可以改善化疗方案的设计,从而在不改变总剂量的情况下改善肿瘤反应。通过考虑累积给药剂量相同的治疗方案,我们描述了高方差方案(如高剂量、低剂量)和低方差方案(恒定剂量)导致的不同治疗结果。我们扩展了之前用于量化二阶效应的框架(即反分散理论),以研究药物药代动力学的作用。通过一个简单的单室模型,我们发现高方差计划对各种累积剂量值都有效。接下来,我们使用小鼠参数化的 5-氟尿嘧啶二室模型,证明计划的可行性取决于初始肿瘤体积。最后,我们说明了肿瘤反应与瘦体重保留之间的权衡。数学建模表明,高变异剂量计划通过在不牺牲肿瘤反应的情况下保留瘦体重,为减轻化疗相关恶病质风险提供了一条潜在的前进道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信