Evaluation of Clinically Significant miRNAs Level by Machine Learning Approaches Utilizing Total Transcriptome Data

IF 0.8 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ya. V. Solovev, A. S. Evpak, A. A. Kudriaeva,  A. G. Gabibov, A. A. Belogurov
{"title":"Evaluation of Clinically Significant miRNAs Level by Machine Learning Approaches Utilizing Total Transcriptome Data","authors":"Ya. V. Solovev,&nbsp;A. S. Evpak,&nbsp;A. A. Kudriaeva,&nbsp; A. G. Gabibov,&nbsp;A. A. Belogurov","doi":"10.1134/S1607672924700790","DOIUrl":null,"url":null,"abstract":"<p>Analysis of the mechanisms underlying the occurrence and progression of cancer represents a key objective in contemporary clinical bioinformatics and molecular biology. Utilizing omics data, particularly transcriptomes, enables a detailed characterization of expression patterns and post-transcriptional regulation across various RNA types relative to the entire transcriptome. Here, we assembled a dataset comprising transcriptomic data from approximately 16 000 patients encompassing over 160 types of cancer. We employed state-of-the-art gradient boosting algorithms to discern intricate correlations in the expression levels of four clinically significant microRNAs, specifically, hsa-mir-21, hsa-let-7a-1, hsa-let-7b, and hsa-let-7i, with the expression levels of the remaining 60 660 unique RNAs. Our analysis revealed a dependence of the expression levels of the studied microRNAs on the concentrations of several small nucleolar RNAs and regulatory long noncoding RNAs. Notably, the roles of these RNAs in the development of specific cancer types had been previously established through experimental evidence. Subsequent evaluation of the created database will facilitate the identification of a broader spectrum of overarching dependencies related to changes in the expression levels of various RNA classes in diverse cancers. In future, it will make possible to discover unique alterations specific to certain types of malignant transformations.</p>","PeriodicalId":529,"journal":{"name":"Doklady Biochemistry and Biophysics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Doklady Biochemistry and Biophysics","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1134/S1607672924700790","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Analysis of the mechanisms underlying the occurrence and progression of cancer represents a key objective in contemporary clinical bioinformatics and molecular biology. Utilizing omics data, particularly transcriptomes, enables a detailed characterization of expression patterns and post-transcriptional regulation across various RNA types relative to the entire transcriptome. Here, we assembled a dataset comprising transcriptomic data from approximately 16 000 patients encompassing over 160 types of cancer. We employed state-of-the-art gradient boosting algorithms to discern intricate correlations in the expression levels of four clinically significant microRNAs, specifically, hsa-mir-21, hsa-let-7a-1, hsa-let-7b, and hsa-let-7i, with the expression levels of the remaining 60 660 unique RNAs. Our analysis revealed a dependence of the expression levels of the studied microRNAs on the concentrations of several small nucleolar RNAs and regulatory long noncoding RNAs. Notably, the roles of these RNAs in the development of specific cancer types had been previously established through experimental evidence. Subsequent evaluation of the created database will facilitate the identification of a broader spectrum of overarching dependencies related to changes in the expression levels of various RNA classes in diverse cancers. In future, it will make possible to discover unique alterations specific to certain types of malignant transformations.

Abstract Image

Abstract Image

利用总转录组数据的机器学习方法评估具有临床意义的 miRNA 水平。
分析癌症发生和发展的内在机制是当代临床生物信息学和分子生物学的一个关键目标。利用全息数据,特别是转录组,可以详细描述相对于整个转录组的各种 RNA 类型的表达模式和转录后调控。在这里,我们建立了一个数据集,其中包括来自约 16000 名患者的转录组数据,涵盖 160 多种癌症类型。我们采用了最先进的梯度提升算法,以辨别四种具有临床意义的 microRNA(特别是 hsa-mir-21、hsa-let-7a-1、hsa-let-7b 和 hsa-let-7i)的表达水平与其余 60 660 种独特 RNA 的表达水平之间错综复杂的相关性。我们的分析表明,所研究的 microRNA 的表达水平取决于几种小核仁 RNA 和调控性长非编码 RNA 的浓度。值得注意的是,这些 RNA 在特定癌症类型发展过程中的作用已通过实验证据确立。对所建数据库的后续评估将有助于确定与不同癌症中各类 RNA 表达水平变化有关的更广泛的总体依赖关系。未来,它将有可能发现特定类型恶性转化的独特改变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Doklady Biochemistry and Biophysics
Doklady Biochemistry and Biophysics 生物-生化与分子生物学
CiteScore
1.60
自引率
12.50%
发文量
68
审稿时长
6-12 weeks
期刊介绍: Doklady Biochemistry and Biophysics is a journal consisting of English translations of articles published in Russian in biochemistry and biophysics sections of the Russian-language journal Doklady Akademii Nauk. The journal''s goal is to publish the most significant new research in biochemistry and biophysics carried out in Russia today or in collaboration with Russian authors. The journal accepts only articles in the Russian language that are submitted or recommended by acting Russian or foreign members of the Russian Academy of Sciences. The journal does not accept direct submissions in English.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信