Pyrogenic organic matter decreases while fresh organic matter increases soil heterotrophic respiration through modifying microbial activity in a subtropical forest

IF 5.1 1区 农林科学 Q1 SOIL SCIENCE
{"title":"Pyrogenic organic matter decreases while fresh organic matter increases soil heterotrophic respiration through modifying microbial activity in a subtropical forest","authors":"","doi":"10.1007/s00374-024-01815-y","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>As the carbon (C) credit market evolves, incorporating organic matter into soils has emerged as a key strategy in C farming. Soil heterotrophic respiration (R<sub>H</sub>) plays a pivotal role in maintaining the C balance in terrestrial ecosystems, yet the contrasting impacts of fresh and pyrogenic organic matter applications on soil R<sub>H</sub>, and associated underlying mechanisms, have not been fully investigated. Through a 2-year field experiment, we investigated how applying maize straw and its derived biochar affect the physical, chemical, and microbial properties of soil in a subtropical Moso bamboo forest. Results showed that straw application increased soil R<sub>H</sub>, while biochar application suppressed it. Soil R<sub>H</sub> was correlated positively with β-glucosidase and cellobiohydrolase activities but negatively with RubisCO enzyme activity. Increased soil R<sub>H</sub> under straw application was linked to the increased β-glucosidase/cellobiohydrolase activities driven by elevated water-soluble organic C and O-alkyl C levels as well as <em>GH48</em> and <em>cbh</em>I gene abundances, and the decreased RubisCO enzyme activity caused by reduced <em>cbbL</em> gene abundance. Conversely, reduced soil R<sub>H</sub> under biochar application was linked to reductions in β-glucosidase and cellobiohydrolase activities induced by increased aromatic C and decreased <em>GH48</em> and <em>cbh</em>I gene levels, and increases in RubisCO enzyme activity driven by higher <em>cbbL</em> gene abundance. More importantly, changes in soil R<sub>H</sub> were clearly linked to microbial dynamics. Specifically, increases in the relative abundances of Alphaproteobacteria and Sordariomycetes and decreases in AD3 and Tremellomycetes contributed to the enhanced soil R<sub>H</sub> under straw application. With biochar application, the reverse effect occurred, ultimately contributing to the reduced soil R<sub>H</sub>. Our study demonstrates that maize straw application increases while biochar application decreases soil R<sub>H</sub> in the subtropical forest. These findings reveal that biochar reduced soil R<sub>H</sub> through changing microbial activity in subtropical forests, providing insight into complex dynamics of soil C cycling in response to diverse interventions.</p>","PeriodicalId":9210,"journal":{"name":"Biology and Fertility of Soils","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology and Fertility of Soils","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s00374-024-01815-y","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

As the carbon (C) credit market evolves, incorporating organic matter into soils has emerged as a key strategy in C farming. Soil heterotrophic respiration (RH) plays a pivotal role in maintaining the C balance in terrestrial ecosystems, yet the contrasting impacts of fresh and pyrogenic organic matter applications on soil RH, and associated underlying mechanisms, have not been fully investigated. Through a 2-year field experiment, we investigated how applying maize straw and its derived biochar affect the physical, chemical, and microbial properties of soil in a subtropical Moso bamboo forest. Results showed that straw application increased soil RH, while biochar application suppressed it. Soil RH was correlated positively with β-glucosidase and cellobiohydrolase activities but negatively with RubisCO enzyme activity. Increased soil RH under straw application was linked to the increased β-glucosidase/cellobiohydrolase activities driven by elevated water-soluble organic C and O-alkyl C levels as well as GH48 and cbhI gene abundances, and the decreased RubisCO enzyme activity caused by reduced cbbL gene abundance. Conversely, reduced soil RH under biochar application was linked to reductions in β-glucosidase and cellobiohydrolase activities induced by increased aromatic C and decreased GH48 and cbhI gene levels, and increases in RubisCO enzyme activity driven by higher cbbL gene abundance. More importantly, changes in soil RH were clearly linked to microbial dynamics. Specifically, increases in the relative abundances of Alphaproteobacteria and Sordariomycetes and decreases in AD3 and Tremellomycetes contributed to the enhanced soil RH under straw application. With biochar application, the reverse effect occurred, ultimately contributing to the reduced soil RH. Our study demonstrates that maize straw application increases while biochar application decreases soil RH in the subtropical forest. These findings reveal that biochar reduced soil RH through changing microbial activity in subtropical forests, providing insight into complex dynamics of soil C cycling in response to diverse interventions.

在亚热带森林中,热源有机物通过改变微生物活动减少了土壤异养呼吸,而新鲜有机物则增加了土壤异养呼吸
摘要 随着碳(C)信用市场的发展,在土壤中添加有机物已成为碳耕作的一项重要战略。土壤异养呼吸(RH)在维持陆地生态系统中的碳平衡方面发挥着关键作用,但新鲜有机质和热源有机质的施用对土壤 RH 的不同影响以及相关的内在机制尚未得到充分研究。通过为期两年的田间试验,我们研究了施用玉米秸秆及其衍生的生物炭如何影响亚热带毛竹林土壤的物理、化学和微生物特性。结果表明,施用玉米秸秆会增加土壤相对湿度,而施用生物炭则会抑制相对湿度。土壤相对湿度与β-葡萄糖苷酶和纤维生物水解酶活性呈正相关,但与RubisCO酶活性呈负相关。施用秸秆条件下土壤相对湿度的增加与水溶性有机 C 和 O- 烷基 C 含量以及 GH48 和 cbhI 基因丰度的增加导致的 β-葡萄糖苷酶/纤维生物水解酶活性的增加以及 cbbL 基因丰度的降低导致的 RubisCO 酶活性的降低有关。相反,施用生物炭后土壤相对湿度的降低与芳香族碳含量的增加、GH48 和 cbhI 基因水平的降低所引起的 β-葡萄糖苷酶和纤维生物水解酶活性的降低以及 cbbL 基因丰度的提高所引起的 RubisCO 酶活性的提高有关。更重要的是,土壤相对湿度的变化显然与微生物的动态变化有关。具体来说,在施用秸秆的情况下,Alphaproteobacteria 和 Sordariomycetes 的相对丰度增加,而 AD3 和 Tremellomycetes 的相对丰度降低,这都是土壤相对湿度增加的原因。施用生物炭后,则出现了相反的效果,最终导致土壤相对湿度降低。我们的研究表明,在亚热带森林中,施用玉米秸秆会增加土壤相对湿度,而施用生物炭则会降低土壤相对湿度。这些研究结果表明,生物炭通过改变亚热带森林中的微生物活动降低了土壤相对湿度,为了解土壤碳循环在不同干预措施下的复杂动态提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biology and Fertility of Soils
Biology and Fertility of Soils 农林科学-土壤科学
CiteScore
11.80
自引率
10.80%
发文量
62
审稿时长
2.2 months
期刊介绍: Biology and Fertility of Soils publishes in English original papers, reviews and short communications on all fundamental and applied aspects of biology – microflora and microfauna - and fertility of soils. It offers a forum for research aimed at broadening the understanding of biological functions, processes and interactions in soils, particularly concerning the increasing demands of agriculture, deforestation and industrialization. The journal includes articles on techniques and methods that evaluate processes, biogeochemical interactions and ecological stresses, and sometimes presents special issues on relevant topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信