Behaviors of non-wetting phase snap-off events in two-phase flow: microscopic phenomena and macroscopic effects

IF 2.3 4区 工程技术 Q2 INSTRUMENTS & INSTRUMENTATION
Ran Li, Zhaolin Gu, Zhang Li, Weizhen Lu, Guozhu Zhao, Junwei Su
{"title":"Behaviors of non-wetting phase snap-off events in two-phase flow: microscopic phenomena and macroscopic effects","authors":"Ran Li,&nbsp;Zhaolin Gu,&nbsp;Zhang Li,&nbsp;Weizhen Lu,&nbsp;Guozhu Zhao,&nbsp;Junwei Su","doi":"10.1007/s10404-024-02718-y","DOIUrl":null,"url":null,"abstract":"<div><p>Snap-off events are one of the most common and essential phenomena in two-phase flow in porous media. This paper uses the scanning results of a siltstone slice to construct a two-dimensional heterogeneous pore network structure to visualise microscopic snap-off phenomena and displacement processes accurately. The relationship between snap-off events and the non-wetting phase saturation was studied using two-phase flow displacement experiments. Results show that although the non-wetting phase snap-off events benefit freeing the trapped non-wetting phase in the microchannels, high-frequency snap-off events are the main reason for trapping the non-wetting phase during the displacement process, eventually leading to residuals. The frequency of non-wetting phase snap-off events in the pore network structure can be reduced to lower the non-wetting phase saturation and reduce the non-wetting phase residuals by increasing the displacement fluid viscosity, reducing the surface tension coefficient between the phases and increasing the flow rate.</p></div>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"28 4","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microfluidics and Nanofluidics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10404-024-02718-y","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Snap-off events are one of the most common and essential phenomena in two-phase flow in porous media. This paper uses the scanning results of a siltstone slice to construct a two-dimensional heterogeneous pore network structure to visualise microscopic snap-off phenomena and displacement processes accurately. The relationship between snap-off events and the non-wetting phase saturation was studied using two-phase flow displacement experiments. Results show that although the non-wetting phase snap-off events benefit freeing the trapped non-wetting phase in the microchannels, high-frequency snap-off events are the main reason for trapping the non-wetting phase during the displacement process, eventually leading to residuals. The frequency of non-wetting phase snap-off events in the pore network structure can be reduced to lower the non-wetting phase saturation and reduce the non-wetting phase residuals by increasing the displacement fluid viscosity, reducing the surface tension coefficient between the phases and increasing the flow rate.

Abstract Image

Abstract Image

两相流中非润湿相卡断事件的行为:微观现象和宏观效应
快断现象是多孔介质两相流中最常见、最基本的现象之一。本文利用粉砂岩切片的扫描结果构建了二维异质孔隙网络结构,以准确地观察微观的卡断现象和位移过程。利用两相流位移实验研究了快断事件与非润湿相饱和度之间的关系。结果表明,虽然非润湿相卡断事件有利于释放微通道中被捕获的非润湿相,但高频率的卡断事件是在位移过程中捕获非润湿相的主要原因,并最终导致残留。可以通过增加置换流体粘度、降低相间表面张力系数和提高流速来降低孔隙网络结构中的非润湿相卡断事件频率,从而降低非润湿相饱和度,减少非润湿相残留。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microfluidics and Nanofluidics
Microfluidics and Nanofluidics 工程技术-纳米科技
CiteScore
4.80
自引率
3.60%
发文量
97
审稿时长
2 months
期刊介绍: Microfluidics and Nanofluidics is an international peer-reviewed journal that aims to publish papers in all aspects of microfluidics, nanofluidics and lab-on-a-chip science and technology. The objectives of the journal are to (1) provide an overview of the current state of the research and development in microfluidics, nanofluidics and lab-on-a-chip devices, (2) improve the fundamental understanding of microfluidic and nanofluidic phenomena, and (3) discuss applications of microfluidics, nanofluidics and lab-on-a-chip devices. Topics covered in this journal include: 1.000 Fundamental principles of micro- and nanoscale phenomena like, flow, mass transport and reactions 3.000 Theoretical models and numerical simulation with experimental and/or analytical proof 4.000 Novel measurement & characterization technologies 5.000 Devices (actuators and sensors) 6.000 New unit-operations for dedicated microfluidic platforms 7.000 Lab-on-a-Chip applications 8.000 Microfabrication technologies and materials Please note, Microfluidics and Nanofluidics does not publish manuscripts studying pure microscale heat transfer since there are many journals that cover this field of research (Journal of Heat Transfer, Journal of Heat and Mass Transfer, Journal of Heat and Fluid Flow, etc.).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信