Morphological Characteristics, Properties, and Applications of Polylactide/Poly(ε-caprolactone) Blends and Their Composites—A Review

IF 5.4 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Karabo Innocent Matumba, Teboho Clement Mokhena, Vincent Ojijo, Emmanuel Rotimi Sadiku, Suprakas Sinha Ray
{"title":"Morphological Characteristics, Properties, and Applications of Polylactide/Poly(ε-caprolactone) Blends and Their Composites—A Review","authors":"Karabo Innocent Matumba,&nbsp;Teboho Clement Mokhena,&nbsp;Vincent Ojijo,&nbsp;Emmanuel Rotimi Sadiku,&nbsp;Suprakas Sinha Ray","doi":"10.1002/mame.202400056","DOIUrl":null,"url":null,"abstract":"<p>Over the past years, poly(lactic acid) or polylactide (PLA) is commonly researched as a possible replacement for traditional fossil-based polymers because of its compostability, biocompatibility, and high mechanical properties. PLA has a variety of applications in packaging, biomedical, and structural. However, PLA has limitations, such as high brittleness, low thermal stability, and a slow crystallization rate, which limits the wide range of applications. To overcome these limitations, the literature reports that blending PLA with other polymers, such as poly(ε-caprolactone) (PCL), is an economically viable approach. Although blending PLA with PCL is considered a feasible approach, the blend system still suffers from immiscibility, depending on the blend composition. This review aims to highlight recent developments from 2014 to date on the processing of PLA/PCL blends, including their composites, with a primary focus on morphological characteristics and mechanical and thermal properties, including their potential applications in various sectors.</p>","PeriodicalId":4,"journal":{"name":"ACS Applied Energy Materials","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400056","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mame.202400056","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Over the past years, poly(lactic acid) or polylactide (PLA) is commonly researched as a possible replacement for traditional fossil-based polymers because of its compostability, biocompatibility, and high mechanical properties. PLA has a variety of applications in packaging, biomedical, and structural. However, PLA has limitations, such as high brittleness, low thermal stability, and a slow crystallization rate, which limits the wide range of applications. To overcome these limitations, the literature reports that blending PLA with other polymers, such as poly(ε-caprolactone) (PCL), is an economically viable approach. Although blending PLA with PCL is considered a feasible approach, the blend system still suffers from immiscibility, depending on the blend composition. This review aims to highlight recent developments from 2014 to date on the processing of PLA/PCL blends, including their composites, with a primary focus on morphological characteristics and mechanical and thermal properties, including their potential applications in various sectors.

Abstract Image

Abstract Image

聚乳酸/聚(ε-己内酯)共混物及其复合材料的形态特征、性能和应用--综述
过去几年来,聚乳酸或聚乳酸(PLA)因其可堆肥性、生物相容性和高机械性能而被广泛研究,成为传统化石基聚合物的可能替代品。聚乳酸在包装、生物医学和结构方面有多种应用。然而,聚乳酸也有其局限性,如脆性大、热稳定性低、结晶速度慢等,从而限制了其广泛的应用范围。为了克服这些局限性,文献报道聚乳酸与其他聚合物(如聚ε-己内酯(PCL))共混是一种经济可行的方法。尽管将聚乳酸与 PCL 混合被认为是一种可行的方法,但混合体系仍存在不溶性问题,具体取决于混合成分。本综述旨在重点介绍 2014 年至今在聚乳酸/ PCL 混合物(包括其复合材料)加工方面的最新进展,主要关注形态特征、机械和热性能,包括其在各个领域的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Energy Materials
ACS Applied Energy Materials Materials Science-Materials Chemistry
CiteScore
10.30
自引率
6.20%
发文量
1368
期刊介绍: ACS Applied Energy Materials is an interdisciplinary journal publishing original research covering all aspects of materials, engineering, chemistry, physics and biology relevant to energy conversion and storage. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important energy applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信